Introduction	Context	Calibration Appoach	Radiance Differences	Conclusions

Tradeoffs in Selection of CrIS L1b Algorithm

L. Larrabee Strow, Howard Motteler, and Sergio de-Souza Machado

Department of Physics, JCET, University of Maryland Baltimore County (UMBC)

CrIS L2 Telecon: March 28, 2016

Introduction	Context	Calibration Appoach	Radiance Differences	Conclusions
•	000000	00000	00000	
Overview				

- Provide context for why need inter-instrument stability
- Calibration Equations
- Radiance and O-C bias differences with different calibration equations

Note: (a) We are talking about really small B(T) differences here, and (b) Both approaches are technically valid (in my opinion) but serve different purposes.

Introduction O	Context ●00000	Calibration Appoach	Radiance Differences	Conclusions O
Overview				

Climate Context

- Fundamental records are the L1(b/c/d) radiances
- NASA is asking for an AIRS + JPSS(1-4)-CrIS climate record
- We must somehow reconcile radiance differences among these instruments at the 0.01K/year level

Possible Approaches

- Do nothing. "Merge" L2 from different instruments with different RTAs. How? Errors?
- Convert AIRS L1c to CrIS ILS and do retrievals with a consistent L1b record and single RTA.
- Produce popular climate records (L3 trends and anomalies) directly from trends and anomalies in merged radiance record

Use SNO's to adjust inter-instrument radiance offsets.

Introduction	Context	Calibration Appoach	Radiance Differences	Conclusions		
	00000					
Instrument Stability						

- Hyperspectral IR should be able to provide climate trends of T and Q with unprecedented accuracy and vertical resolution (but may compete with GPSRO).
- Comparisons of AIRS, IASI, and CrIS radiances trends (clear-sky subset over ocean) to independently available CO₂ and SST trends indicate stability well less than 0.01K/year for these instruments (with some minor caveats for AIRS).

Note: This figures shows that we can use a "third party" (IASI) to connect AIRS to CrIS.

CNES recently showed that understood errors in their non-linearity corrections are largely responsible for the CrIS-IASI differences!

Mainly note small standard error in offsets. Due to large number of observations, probably more work needed to fully characterise uncertainties (scene dependence).

Introduction	Context	Calibration Appoach	Radiance Differences	Conclusions
	000000			
Basic Me	essage			

- Instrument stability is high, overlap can be well characterized
- Climate trending requires 0.01K/year or lower relative accuracy
- Radiance trends can be converted into accurate geophysical trends
- Small shifts matter

 Introduction
 Context
 Calibration Appoach
 Radiance Differences
 Conclusions

 0
 00000
 00000
 00000
 0

CrIS L1b Calibration Equations

Calibration Equation Definitions

For this talk the term "UMBC" denotes the CCAST reference calibration equation while "NOAA" refers to the proposed JPSS-1 (and NASA NPP?) calibration equation. Univ. Wisc. is adding more refinements to this with changes to interferograms after Nov 2015.

UMBC:

$$\mathbf{r}_{\text{ES}} = \mathbf{F} \cdot \mathbf{f} \cdot \mathbf{S} \mathbf{A}^{-1} \cdot \mathbf{f} \cdot (\mathbf{S} \mathbf{A} \cdot \mathbf{r}_{\text{ICT}}) \frac{\mathbf{E} \mathbf{S} - \langle \mathbf{S} \mathbf{P} \rangle}{\langle \mathbf{I} \mathbf{C} \mathbf{T} \rangle - \langle \mathbf{S} \mathbf{P} \rangle}$$

NOAA-C4:

$$r_{\rm ES} = r_{\rm ICT} \frac{F \cdot f \cdot SA^{-1} \cdot f \cdot \left\{\frac{\Delta S_1}{\Delta S_2} \cdot \Delta |S_2|\right\}}{F \cdot f \cdot SA^{-1} \cdot f \cdot |\Delta S_2|}$$

$$\Delta S_1 = FIR^{-1}(ES - \langle SP \rangle), \quad \Delta S_2 = FIR^{-1}(\langle ICT \rangle - \langle SP \rangle)$$

- *r*ES is calibrated earth-scene radiance at the user grid
- F is resampling from sensor to user grid
- r_{ICT} is the expected ICT radiance (incorrect in NOAA-C4)
- *f*, UMBC: is a raised-cosine bandpass filter with wings at or inside the instrument responsivity, NOAA: modified ATBD filter
- SA, UMBC: Periodic sinc ILS wrapping at the sensor grid, NOAA: Periodic sinc wrapping at the undecimated sensor grid.
- Non-linearity corrections are included
- $\langle SP \rangle$ and $\langle ICT \rangle$ are averages over 9 scans

Introduction	Context	Calibration Appoach	Radiance Differences	Conclusions
	000000	0000	00000	

The Essential Difference: (Note SA⁻¹ Corrections are BIG) Simplified Math to Illustrate (not technically correct)

UMBC:
$$SA^{-1}(r_{ICT}\frac{\Delta S_1}{\Delta S_2}) = SA^{-1}(r_{ICT}\frac{ES - \langle SP \rangle}{\langle ICT \rangle - \langle SP \rangle})$$

NOAA-C4: $r_{ICT}\frac{SA^{-1}(\Delta S_1)}{SA^{-1}(\Delta S_2)}$

- NOAA-C4 is a new approach, not used in the past.
- NOAA-C4 applies apodization correction operator to signal counts, so includes shape of instrument spectral filtering
- UMBC applies apodization correction operator to calibrated radiance

Implications

- NOAA-C4
 - Minimizes 650 cm⁻¹ band-edge ringing
 - "Requires" instrument filter function to be used in RTA
 - Does not formally return a sinc ILS
- UMBC
 - Produces some 650 cm⁻¹ ringing
 - We think gives better Obs-Cal in the water band
 - RTA for any instrument filter shape is sinc ILS

One row of SA^{-1} centered at 1402.46 cm⁻¹. The corrected radiance for 1402.46 cm⁻¹ is the sum of element-by-element product of this row of SA^{-1} times the observed instrument radiance (or counts).

Introduction O	Context 000000	Calibration Appoach	Radiance Differences	Conclusions O		
Some Observations						

- NOAA-C4
 - $r_{calc} = (1/P_r) FFT^{-1}(OPD) FFT P_r r_{mono}$
 - P_r is instrument responsivity (ΔS_2)
 - r_{calc} needs P_r (and is not a sinc ILS (my opinion))
 - Ps changes slightly with iFOV, instrument, temperature
- Standard Approach (UMBC)
 - $r_{calc} = FFT^{-1}(OPD) FFT f_{bandpass} r_{mono}$

NOAA approach: apodization corrections mix in fine structure of spectrum with different amplitudes, OK since same done in r_{calc} . Not a sinc ILS>

Standard (UMBC) approach provides sinc ILS up to issues of out-of-band signal (which are pt-by-pt oscillations).

Introduction	Context	Calibration Appoach	Radiance Differences	Conclusions
			00000	

L1b Spectra are Different!

Extra 650 cm⁻¹ ringing in normal UMBC approach.

Wavenumber (cm⁻¹) Each measurement used the RTA appropriate for the L1b calibration equation used to calibrate the radiances. This all-fov average minimizes problems with UMBC 650 cm⁻¹ ringing that varies with FOV ID!!

-0.3 -0.4

These average over all 9 FOVS, which minimizes UMBC ringing errors near 650 $\rm cm^{-1}.$

Introduction	Context	Calibration Appoach	Radiance Differences	Conclusions
				•
Conclus	ions			

- New approach could modify radiances if follow-on CrIS instruments have different shape to filters (or the present one changes)
- Differences in ringing between both approachs is very small if Hamming apodized
- Different RTA needed for each instrument
- ILS no longer strictly sinc (or sinc with simple overall bandpass)
- Trending at the 0.01K level over many years could be compromised.
- Ability to convert AIRS radiance to CrIS radiance *may* be harder with NOAA-C4 since we do spectral space convolutions.

Main lien of UMBC approach is some ringing at 650-670 $\rm cm^{-1}$. However that is suppressed with Hamming.

NOAA-C4 is a new approach, technically valid, but ties the RTA to the instrument responsivity, which I think is inappropriate for a radiance climate product.