$\underset{\circ}{\text{Introduction}}$

Approach

Trends

Anomalies

AIRS 13-Year Trends from Radiance Derivatives Compared to AIRS L3 and ERA Interim Reanalysis

L. Larrabee Strow, Sergio De Souza-Machado, and Steven Buczkowski

UMBC

Department of Physics *and* Joint Center for Earth Systems Technology

> March 22, 2016 AIRS Science Team Meeting

Introduction	Approach	Trends	Anomalies	
•	00000	00000000000000000		
Overview				

AIRS + CrIS Lifetimes Entering Climate Regime

- AIRS products developed for NWP
- Is our existing approach going to meet climate requirements?
- How will we connect AIRS + CrIS + IASI, etc.?

Climate Requirements

- Error characterization and traceability
- Data processing by others (reproducible)
- Transparent (simple?) processing algorithms
- Open source (NASA is requiring this now?)

AIRS + CrIS brings a *tremendous* improvement to climate trending with high vertical sensitivity for temperature and humidity.

Anomalies

Climate Variabililty and Measurement Accuracy

AIRS+CrIS: 13+ Years

- Study by Leroy (left) shows transition after ~ 12 years
- Uncertainty more sensitive to measurement accuracy (not inter-annual variability)
- Are the instrument labels correct??
- AIRS stability 2X (or more) lower than 0.01K/year
- Last STM: AIRS + CrIS SNO difference stats imply "stiching" to well below 0.01K
- Last STM: Convert AIRS to CrIS ILS for radiance time series

Approach ○●○○○

Anomalies

Lower Zonal Variability with Time A quick example of time-averaging.

1231 cm⁻¹ Window Channel

- Linear trend: d(BT)/dt
- 8 year versus 13 year zonal trend
- Averaging over inter-annual variability mirrored in latitude dependence of change

Anomalies

Existing Retrieval Framework

Retrieval

- 1) First guess: Neural Net (NN)
- 2) L1b converted to cloud-cleared radiances (L2cc)
- 3) Minimize L2cc RTA(Level 2). No closure.
- 4) 70-80% yield (enhanced by NN now)
- 5) Note: NN trained on several months ECMWF with fixed CO₂.
- Level 2 averaged to Level 3

OK for Climate Trending?

- Neural Net and cloud-clearing errors hard to characterize
- Influence of a-priori information unknown
- Partial scene-dependent sampling
- No radiance closure!
- L2 vertical kernel functions too narrow for AIRS (comes from NNet)

Anomalies

Alternative Retrieval Path for Climate Trending

Two Approaches

- Derive trends and anomalies in radiance space, then retrieve geophysical variables
- Examine trends in Probablity Distribution Functions (PDFs) of single channels to focus on extremes).

T(z) and $H_2O(z)$ "Level 3" profile trends and anomalies are likely the most important variables AIRS + CrIS can contribute to climate. We are not suggesting this is a replacement for single-footprint Level 2 retrievals.

Radiance Based Trending

Assumes T(z),H₂O (z) anomalies versus time is the key trending product

- Operate in radiance space as long as possible (error traceability)
- Lower data volumes (1-2%)
- Data averaging (gridded, zonal)
- Adopt OE retrieval framework with scattering RTA: a-priori for trends is *zero*.
- Using a L1-type Tikhonov empirical smoother with some help from an estimated a-priori covariance.

13-year T(z), $H_2O(z)$ anomalies (zonal) can be processed in 1-2 hours on 40 cpu cores! (Years to test AIRS V6 Level 3!). Linear zonal rates just take a minute to run on 100 layers.

Small data set for use by a larger community

Introduction	Approach	Trends	Anomalies
		•••••••	

Examine Zonal Trends

- Zonal trends commonly used in climate/feedback studies
- Zonal averages let's us keep all data in memory
- No reason we cannot transition to gridded trends in the future

Figure 1. Temperature trend 1960–2012 versus latitude and pressure. The value for each latitude and pressure is the medians of the trends at individual stations in that (10°) latitude bin. Units are °C per decade.

Approach 00000 **Trends** ○●○○○○○○○○○○○○○ Anomalies

Radiance Time Series and Anomalies

- Data Set: 2378 channels by 40 zonal bins
- Fit to a constant, a time derivative, and annual sinusoids and harmonics.
- Generate jacobians
- Retrieve geophysical rates and anomalies from radiance rates and anomalies.

Approach

Trends

Anomalies

Rate Retrieval Inputs

Cloudy Simulation Errors

Cloudy RTA

- Approach very tough: all sky
- RTA using ERA clouds statistically good to 0.5-1.0K
- *Easy* to reduce sensitivity to clouds (bin data by cloudiness and use less cloudy as a-priori for more cloudy bins).

Trends ०००●०००००००००० Anomalies

Treatment of Uncertainties in Rates Two approaches

- Just comparing data sets: ignore uncertainty in spectral rates due to inter-annual variability. Uncertainty is just estimated instrument stability.
- Scientifically valid rates: include uncertainty in spectral rates due to geophysical inter-annual variability.

Approach

Trends

ERA*AK d(T)/dt K/yr

0.15

Anomalies

10-Year Temperature Trends: AIRS OLD

Approach

 Anomalies

13-Year Temperature Trends: AIRS

Approach 00000

 Anomalies

0.01

0.008

0.006

0.004

0.002

-0.002

-0.004

-0.006

-0.008

-0.01

0.01

0.008

0.006

0.004

0.002

-0.002

-0.004

-0.006

-0.008

-0.01

13-Year Water Vapor Trends

Scientifically Valid 13-Year Linear Temperature Trends

Tropospheric heating, stratospheric cooling. Tropical stratospheric heating quite small.

The AIRS Level 3 temperature product is not amenable to this type of analysis, so the previous results are the best I can do.

Introduction Approach Trends Anomalies

Scientifically Valid 13-Year Linear Trends in Water?

Introduction Approach Trends o oooo ooooo ooooo

Trends 00000000000000000 Anomalies

Scientifically Valid 13-Year Ozone Trends?

Roughly same rates as Sciamachy for 2000-2010, including latitude dependence in stratosphere.

Introduction Approach

Trends

Anomalies

Window Channel Rates and Surface T Retrievals

Our mid-latitude surface temperature rates are quite high?

The fix: Separate retrievals in a subset of clear, less clear, full clouds. First results recently done and are encouraging.

Approach

 Anomalies

Cloud Trends: Very Preliminary

Is amount/size correlation reasonable? Water cloud changes extremely small.

Approach 00000

 Anomalies

Global Mean Change in Observed B(T) for 12 Years

The "Hiatus" (using anomaly retrievals shown later)

I used 200 to 950 mbar retrievals.

Trends

Anomalies

The "Hiatus": Need Vertical Resolution PRELIMINARY: Incomplete Error Analysis

- Karl: 2000-2014 gets 0.0116 \pm 0.0067 K/year (1 sigma!). This is surface air.
- Christy: Almost zero during Hiatus. This is tropospheric average.
- Just for kicks, what do we get?
 - 950-200 mbar: -0.004 K/year \pm 0.018/2 K/year?? (1 σ)
 - 950-700 mbar: +0.006 K/year \pm 0.018/2 K/year?? (1 σ)
- The point is not the absolute numbers (although they are interesting) but that (a) we are in the ballpark with a very very simple and easy approach, and (b) we have vertical sensitivity
- So, maybe everybody is right?

Approach 00000

Anomalies ●00

27N to 30N Zonal Temperature Anomalies

In	tr	0	d	u	С	ti	0	n	

Anomalies 000

27N to 30N Water Vapor Anomalies

(fraction/year).

Introduction	Approach	Trends	Anomalies
o	00000	0000000000000	○○●
Final Thoughts			

I believe we need to re-think how to do climate with AIRS (+CrIS), especially trending.

- Years between AIRS Product versions: 5+
- Overhead of producing all AIRS products is gigantic
- Time to produce L3 with new algorithm: 4-6 months?
- Very complex algorithm
- Algorithm code not generally available
- Data set is 100 TB+
- No one has suggested how to connect AIRS to CrIS via native retrievals. TBD.
- Algorithm does not estimate errors
- Trending with AIRS Level 3 might? be problematic.