Introduction	Spectra and Liens	Neon Cal	Focal Plane Fits	FP vs UW, Exelis	Discussion

FM-2 TVAC Analysis of Neon and Focal Plane Calibration

L. Larrabee Strow, Howard Motteler, and Sergio De-Souza Machado

March 11, 2015

Introduction	Spectra and Liens	Neon Cal	Focal Plane Fits	FP vs UW, Exelis	Discussion
Overvie	2W				

- Accuracy requirements for gas cell spectra
- Overview of spectra and various liens on data
- Neon calibration (MN only)
- Focal plane (FP) geometry
- Comparisons to Exelis, UW

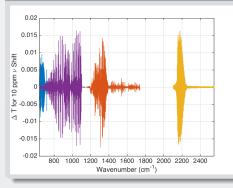
Howard Motteler's earlier presentations outline the methods used here for simulating observations and fitting spectra.

Matrix of focal plane ppm offset errors always use the following convention for FOV locations:

7	4	1
8	5	2
9	6	3

pectra and Liens

Neon Cal


Focal Plane Fits

FP vs UW, Exelis

Discussion

Gas Cell Transmittance Sensitivity

Δ Transmittance for a 10 ppm ν Offset

Observations

- CO₂ least sensitive
- CO and NH₃ most sensitive
- 1 ppm level implies accuracy of ~0.0005 for CO₂!!

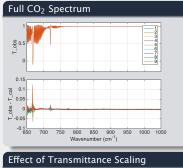
Spectroscopy

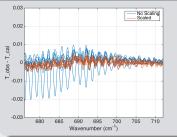
- CO easiest to model
- CH₄ and CO₂ next easiest (except Q-branches)
- NH₃ spectroscopy has problems (recent references)

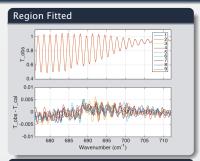
Incorrect gas cell pressures highly problematic.

Spectra and Liens

Neon Cal

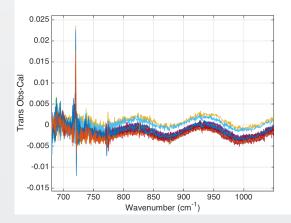

Focal Plane Fits


ne Fits


FP vs UW, Exelis

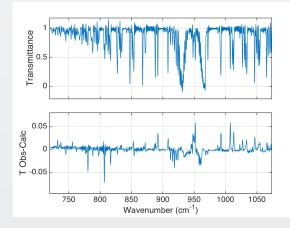
Discussion

LW CO₂ Spectra (MN, Side 1)


Observations

- Some baseline or spectroscopy problems near 687 cm⁻¹?
- Transmittance scaline appears to account for non-linearity

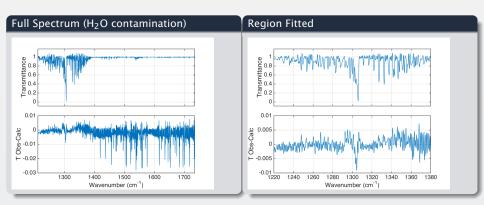
Fringing in CO₂ Side 2 MN Spectra


A number of spectra show baseline fringing. Have not determined if this enters via a single spectrum (full, empty, hot, cold).

Note: Larger obs-calc near regions of line-mixing

Introduction	Spectra and Liens	Neon Cal	Focal Plane Fits	FP vs UW, Exelis	Discussion
Poor NH	H_3 Fits				

The NH₃ spectrum is difficult to simulate due to poor spectroscopy. Recent literature cites problems in HITRAN 2012 even for some strong lines. Line mixing and self-broadening also problematic, especially if gas pressure is incorrect.

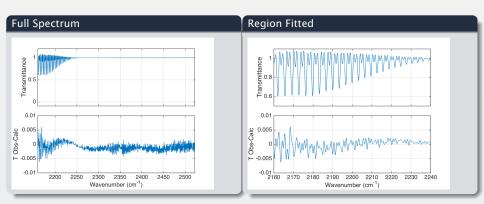


Focal Plane Fits

FP vs UV

Discussion

CH₄ Spectra


Line mixing evident near Q-branch. Possibly re-fit and ignore that region.

Focal Plane Fit

FP vs UV

Discussion

CO Spectra

Some minor baseline problems and fitting problems at low cm⁻¹ side of band.

Test Summary \triangle Neon (from FM-1) = 2.8 ± 0.2 ppm or 703.45257, (+1.5 ppm than Exelis)

Test ID	Т	Side	Neon	P_log	P_fit	fit-log	Lien
			(ppm)	(torr)	(torr)	(torr)	
11-20_CO2	PQL	1	-1.8	41	22	-19	Bad P
11-25_CO2	PQL	2	0.5	40	27	-13	Bad P, 775 cm-1?, Fringes
10-16_CO2	MN	1	2.8	40	40	0	
10-18_CO2	MN	2	3.9	40	40	0	Fringes
11-09_CO2s1	PQH	1	4.6	40	40	0	NH3, Fringes
11-09_CO2s2	PQH	2	2.6	41	37	-4	NH3, Fringes
11-20_NH3	PQL	1	6.0	20	18	-1	FOV9 way off
11-19_NH3	PQL	2	3.9	21	18	-3	
10-16_NH3	MN	1	3.6	39	37	-2	
10-27_NH3	MN	1	12.1	21	40	19	Bad P
10-18_NH3	MN	2	11.9	40	6	-34	Bad P
11-09_NH3	PQH	1	12.6	20	34	14	Bad P
09-27_NH3	PQH	2	10.8	39	7	-32	Bad P
11-20_CH4	PQL	1	2.1	41	30	-12	Bad P
10-16_CH4	MN	1	2.8	40	40	0	
10-18_CH4	MN	2	2.6	42	42	-0	
11-05_CH4	PQH	1	2.8	41	41	0	
11-19_CO	PQL	1	2.6	45	45	0	
10-15_CO	MŇ	1	3.1	42	42	0	
10-18_CO	MN	2	2.6	41	41	0	
10-02_CO	PQH	1	3.1	40	26	-14	Bad P

Introduction Spectra and Liens Neon Cal Focal Plane Fits FP vs UW, Exelis Discussion
Focal Plane (FP) Parameters

- Only effective off-axis angles needed
- FOV5 insensitive since nearly on-axis, use nominal rigid focal plane to locate FOV5 position
- Primary parameters to date
 - Rigid FP displacement (x,y offsets)
 - Offset from rigid 3x3 geometry (dx,dy relative to offset origin)
- Introduce here a third parameter "*dr*": effective radius of FP (proxy for telescope de-focus?)

We find that *dr* can often account for most of the non-rigid geometry of the FP.

Focal Plane Fitting: Longwave CO2, MN, Side 1

Offset x,y fit only (ppm - FOV5)

LW				MW		
3.8	1.0	3.1	Ι.	-0.6	-0.5	-1.0
-0.9	-0.0	2.7	Ε.	-0.6	-0.0	0.1
4.6	1.3	1.7	L	-0.3	-1.0	-0.7
				_		_

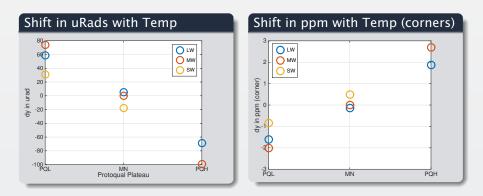
SW		
-1.2	-0.7	-2.3
-1.0	0.0	0.2
-1.6	-0.8	-1.7

Offset x,y fit + dr (ppm - FOV5)

LW	MW	SW
1.0 -1.0 0.4	0.1 -0.0 -0.3	0.2 0.3 -0.9
-2.8 0.0 0.8	-0.1 -0.0 0.6	-0.0 -0.0 1.2
2.0 -0.5 -1.0	0.3 -0.6 -0.0	-0.2 0.1 -0.3

- This lowers many of the ppm offsets to the 1 ppm range
- A change in *dr* was the primary difference between TVAC and in-orbit values for FM-1
- *dr* here is ~25 to 100 μ radians

Spectra and Lien


Neon Cal

Focal Plane Fits

FP vs UW, Exelis

Discussion

Focal Plane Shifts with Temperature

Focal plane "y-axis" shifts also seen in FM-1 TVAC data

Focal Plane Comparisons (SW)

Shown are focal plane geometry differences between UMBC, UW, and Exelis in units of ppm.

SW: UW - UMBC	SW: UW - Exelis
0.6 0.3 0.9	1.5 1.1 1.5
0.1 -0.0 0.0	0.1 -0.0 -0.3
1.4 0.1 0.6	1.5 -0.4 -0.0
SW: UMBC - Exelis	Summary
SW: UMBC - Exelis 1.0 0.8 0.6	Summary • UMBC and UW agree well,

pectra and Lien:

Neon Cal

Focal Plane Fits

its F

FP vs UW, Exelis

Discussion

Focal Plane Comparisons (MW)

Shown are focal plane geometry differences between UMBC, UW, and Exelis in units of ppm.

MW: UW - UMBC	MW: UW - Exelis
-0.1 0.1 0.6 -0.5 -0.0 0.2 -0.2 -0.4 0.5	1.7 1.9 2.3 0.0 -0.0 0.4 -1.0 -0.9 -0.6
MW: UMBC - Exelis	Summary
1.8 1.8 1.7 0.6 0.0 0.3 -0.9 -0.5 -1.2	 UMBC and UW: Excellent agreement, max difference of 0.6 ppm UMBC,UW and Exelis: Larger
	differences, up to 1.9 ppm

pectra and Liens

Neon Cal

Focal Plane Fits

Fits

FP vs UW, Exelis

Discussion

Focal Plane Comparisons (LW)

Shown are focal plane geometry differences between UMBC, UW, and Exelis in units of ppm.

LW: UW - UMBC	LW: UW - Exelis
-3.3 -2.2 -2.9 -2.8 -0.0 -3.6 -3.8 -1.4 -4.7	-1.0 -0.4 -1.0 -0.8 -0.0 -1.8 -4.5 -2.1 -4.9
LW: UMBC - Exelis	Summary
2.2 1.8 1.8 2.1 0.0 1.8 -0.7 -0.6 -0.2	 UMBC and UW: Much poorer agreement, up to 4.7 ppm UW and Exelis: Much poorer agreement, up to 4.9 ppm UMBC and Exelis: Medium agreement: up to 2.2 ppm

Fit Focal Plane Difference (LW)

Shown are focal plane geometry differences between UMBC, UW, and Exelis in units of ppm.

Rigid focal plane fit: vary 3x3 x, y and dr (urad unit)

Focal Plane Fit to UW - UMBC	Focal Plane Fit to Exelis - UMBC
Differences	Differences
dy = -15 dx = 11 dr = 133	dy = 64 dx = -2 dr = 42
Residuals from fit	Residuals from fit
0.1 -0.1 -0.7	-0.2 -0.2 -0.5
0.5 0.0 0.8	1.2 0.0 1.1
0.1 -1.4 0.6	-0.6 -0.2 -0.1

Interestingly, the differences between UW and UMBC are almost soley due to an effective change in focal plane radius

Work needed to resolve this issue: FOV-5 nonlinearity? Our limited testing gives identical results using (FOV-n - FOV-5) instead of (FOV-n - FOV-n_{calc}).

Introduction	Spectra and Liens	Neon Cal	Focal Plane Fits	FP vs UW, Exelis	Discussion
Conclu	sions				

- High accuracy need for both:
 - Observed gas cell spectra
 - Simulation of these spectra
- MN Side 1 spectra good enough for Neon calibration for all three bands. Agreement for all three bands to well less than 1 ppm.
- Neon calibration liens
 - MN Side 2 spectra only good for midwave and shortwave
 - PQL only good for shortwave (maybe midwave), side 1 only
 - PQH only good for midwave (maybe shortwave), side 1 only
- Focal plane geometry (MN, Side 1 only)
 - Small y-shifts with temperature
 - FP radial size (focus) explains much of FP differences from theory
 - Excellent agreement in shortwave and midwave with UW.
 - Relatively poor agreement in longwave with UW.
 - (Generally, UW approach to geometry is more robust.)
 - Differences can be explained mostly with small change in focal plane radius?? Need to resolve these differences.

Introduction	Spectra and Liens	Neon Cal	Focal Plane Fits	FP vs UW, Exelis	Discussion			
Recommendations								

- Delete NH₃ tests
- Determine why gas cell pressures were incorrect
- Study root cause for fringing in spectra and mitigate