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Status of AIRS and CrIS Intercomparisons

CrIS L1b a moving target: shown here is NOAA IDPS. We are
moving to NPP L1b (UW/UMBC CCAST Algorithm.)

CCAST improved over NOAA IDPS, expect continued
improvements over the next 6+ months.

We (UMBC) can easily integrate changes from all parties and
re-process complete mission in several days. (Available on our
web site).

AIRS L1c is integral to channel-by-channel comparisons
between AIRS and CrIS.

Full AIRS L1c at DAAC would speed this work considerably.

Intercomparison work suggests a possibly robust way to
continue the AIRS record with CrIS
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Robust and Traceable AIRS Long-Term Trends
Standard Approach
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L1c Validation: ECMWF Bias Using AIRS L1c
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L1c Validation: ECMWF Bias Using AIRS L1c
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L1c Validation: ECMWF Bias Using AIRS L1c
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AIRS L1c: Mismatch due to ILS Differences

Sampling of AIRS vs CrIS ILS B(T) error using just ν interpolation
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L1c for AIRS Conversion to CrIS
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L1c for AIRS Conversion to CrIS
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L1c for AIRS Conversion to CrIS
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L1c for AIRS Conversion to CrIS
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L1c for AIRS Conversion to CrIS
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L1c for AIRS Conversion to CrIS
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L1c for AIRS Conversion to CrIS
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Closer Look: SNO Difference at 1507 cm−1

Bottom panel shows bad AIRS channels near 0.4K SNO difference.
Black is “bad SRF”, Red is dead channel!
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CrIS - AIRS SNOs versus Scene Temperature

Detector non-linearity can cause scene dependent differences among sensors.
Here we show longwave (for year 2013) CrIS minus AIRS SNO differences for win-
dow and deep water line channels. The AIRS 1593 cm−1 channel ILS has been
converted to the CrIS ILS.
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All CrIS FOVs are included here, non-linearity likely causing slope at 1593 cm−1.
Clearly, AIRS/IASI/CrIS already agree ∼0.2K with no adjustments! SNO should
allow adjustments (when needed) with high precision.
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Off-Axis FOV Apodization Corrections
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With high spectral resolution, adjustment of off-axis observations to
equivalent on-axis is more difficult. Results from Dec 6-10, 2014 data
shown here show this is working well.

Higher spectral resolution produces colder scenes in deep water lines.
FOV7 highly non-linear, will require further adjustments.
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CrIS Hi-Res and IASI SNO’s, Dec. 5-6, 2014
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SNOs only at high latitudes, near +78, -78 degrees.
Differences between CrIS and IASI too small to see here.
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CrIS/IASI SNO’s, Dec. 5-6, 2014:
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Ringing in longwave: several
contributions (IASI->CrIS, CrIS
ringing, IASI?)

Non-linearity in either instrument
could effect low-BT mid-wave water
lines. (CrIS FOV7)

Low shortwave BT’s enhances errors
in differences. Higher daytime
temperatures (due to non-LTE)
reduces difference in day only.

Proposed climate record will use lower panel ILS (possibly reduced
even more)
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Long-Term Trends
Radiance based trending; then convert to geophysical variables

Robust measurement of long-term climate trends will likely
require AIRS + CrIS (with IASI coming later)

Requires instrument stability (AIRS shown to be <
0.001K/year)

CrIS 2-year stability very good, will evaluate 3-year stability
soon.

Requires instrument overlap for correction of calibration
differences

Inter-annual variability is mostly regional

What do we see so far (10 years)?

Two 10-Year Rates

I call them rates, because geophysical variability...
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UMBC Temperature vs ERA-Interim, MERRA, AIRS L3
Retrievals from 10-Year zonal mean linear radiance rates



22

Goal ILS Conversion + SNOs Trend Observations

Globally Averaged AIRS 10-Year All-Sky BT Rates
Area Weighted. Geophysical uncertainties not done yet!
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Global Averaged AIRS 10-Year All-Sky BT Rates
Comparison to All-Sky Simulations, but only changing CO2 + CH4.
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Little mid-trop ∆T , decrease in mid-trop H2O ∼ 0.1%, surface T +0.02K.
Main observation: Stratospheric cooling? Measurement error ∼ 0.003K?,
geophysical variability higher.
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Conclusions

Operational sensors have the stability needed for climate

In-orbit overlap should allow stitching records with
uncertainty equivalent to 0.1K/decade. Some risk.

CrIS (and AIRS) calibration improvements can be made, key is
that the standard deviation of these differences is small!

Demonstrated re-analysis level results with all-sky retrievals
derived from radiance trends

This approach allows a much more rigorous error analysis
needed for community acceptance of satellite derived climate
change.
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