Introduction	Approach	Connecting Sensors	Trends	Anomalies	PDFs

An Infrared Radiance Climate Record Combining AIRS and CrIS

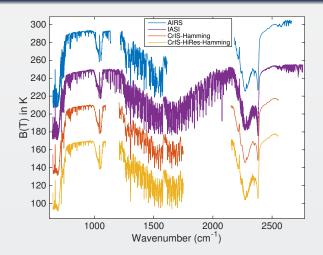
L. Larrabee Strow, Sergio De Souza-Machado, Christopher Hepplewhite, and Howard Motteler

> UMBC Department of Physics *and* Joint Center for Earth Systems Technology

> > December 14, 2015 AGU 2015 Annual Meeting

Introduction	Approach	Connecting Sensors	Trends	Anomalies	PDFs
●○	00000		0000000	00	0000
Overview					

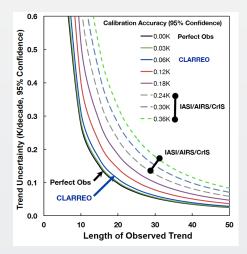
AIRS + CrIS Lifetimes Entering Climate Regime


- AIRS products developed for NWP
- But, NWP and reanalyses, use radiance assimilation!
- Can existing approach transition to climate?

Climate Requirements

- Error characterization and traceability
- Data processing by others (reproducible)
- Transparent (simple?) processing algorithms
- Open source (NASA is requiring this now?)

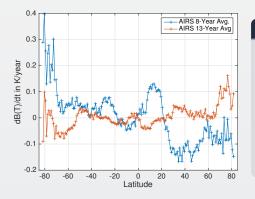
AIRS + CrIS brings a tremendous improvement to climate trending with high vertical sensitivity for temperature and humidity.


Introduction	Approach	Connecting Sensors	Trends	Anomalies	PDFs
○●	00000		0000000	00	0000
Hypersp	ectral Sou	unders: Sampl	e Spectra	l	

Different spectral resolutions and channel centers

Introduction	Approach	Connecting Sensors	Trends	Anomalies	PDFs
	•0000				

Why a Different Retrieval Approach Now?



AIRS+CrIS: 13+ Years

- Study by Leroy (left) shows transition after ~ 12 years
- Uncertainty more sensitive to measurement accuracy (not inter-annual variability)
- Are the instrument labels correct??

Introduction	Approach ○●○○○	Connecting Sensors	Trends 0000000	Anomalies	PDFs
1		ماد: المريد بينادا م			

Lower Zonal Variability with Time A quick example of time-averaging.

1231 cm⁻¹ Window Channel

- Linear trend: d(BT)/dt
- 8 year versus 13 year zonal trend
- Averaging over inter-annual variability mirrored in latitude dependence of change

Introduction	Approach 00●00	Connecting Sensors	Trends 0000000	Anomalies 00	PDFs 0000
F					

Existing Retrieval Framework

Retrieval

- 1) First guess: Neural Net (NN)
- 2) L1b converted to cloud-cleared radiances (L2cc)
- 3) Minimize L2cc RTA(Level 2). No closure.
- 4) 70-80% yield (enhanced by NN now)
- 5) Note: NN trained on several months ECMWF with fixed CO_2 .
- Level 2 averaged to Level 3

OK for Climate Trending?

- Neural Net and cloud-clearing errors hard to characterize
- Influence of a-priori information unknown
- Partial scene-dependent sampling
- No radiance closure!
- L2 vertical kernel functions too narrow for AIRS (comes from NNet)

Introduction	Approach	Connecting Sensors	Trends	Anomalies	PDFs
	00000				

Alternative Retrieval Path for Climate Trending

Two Approaches

- Derive trends and anomalies in radiance space, then retrieve geophysical variables
- Examine trends in Probablity Distribution Functions (PDFs) of single channels to focus on extremes (if time).

T(z) and $H_2O(z)$ "Level 3" profile trends and anomalies are likely the most important variables AIRS + CrIS can contribute to climate. We are not suggesting this is a replacement for single-footprint Level 2 retrievals.

Introduction	Approach	Connecting Sensors	Trends	Anomalies	PDFs
	00000				

Radiance Based Trending

Assumes T(z), $H_2O(z)$ anomalies versus time is the key trending product

- Operate in radiance space as long as possible (error traceability)
- Lower data volumes (1-2%)
- Data averaging (gridded, zonal)
- Adopt OE retrieval framework with scattering RTA: a-priori for trends is *zero*.
- OE a-priori covariance very loose, use L1-type Tikhonov empirical smoother.

12-year T(z), $H_2O(z)$ anomalies (zonal) can be processed in 1-2 hours on 40 cpu cores! (Years to test AIRS V6 Level 3!).

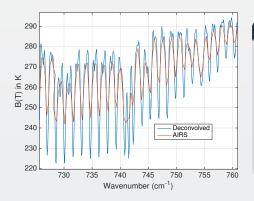
Small data set for use by a larger community

Introduction	Approach	Connecting Sensors	Trends	Anomalies	PDFs
		0000			

Connecting AIRS + CrIS

Present Approach

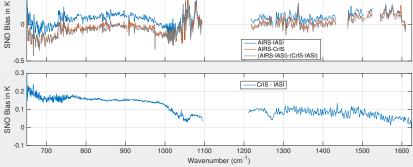
- Native radiances
- Different forward model (RTA)
- Different cloud-clearing (FOV geometry differences)
- Differing sensitivities
- How Connect?


Proposed Approach

- Convert AIRS radiances to CrIS instrument line shape (ILS)
- Adjust AIRS to CrIS radiometrically using SNOs (max ${\sim}0.2K$ \pm 0.01K adjustments)

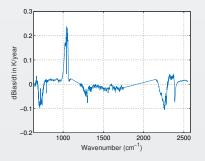
Can be used in single-footprint methodology or using trending/PDF approaches discussed above.

Introduction	Approach	Connecting Sensors	Trends	Anomalies	PDFs
	00000	○●○○	0000000	00	0000
_					


Conversion of AIRS to CrIS

AIRS ILS \rightarrow CrIS ILS

- Deconvolve AIRS to 0.1 cm⁻¹ grid.
- Classical approach only using AIRS measured ILS functions (no statistics or training)
- Re-convolve to CrIS ILS

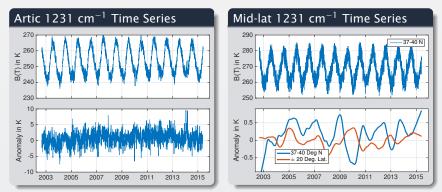

- AIRS, IASI both converted to CrIS ILS
- Uncertainty of SNO differences: $\sim \pm 0.01 K$
- Recent work by CNES suggests SNO differences mostly IAS non-linearity
- High frequency hash in AIRS differences could be radiometry or AIRS SRFs

Introduction	Approach 00000	Connecting Sensors	Trends 0000000	Anomalies 00	PDFs 0000
	6.4.000				

Stability of AIRS and CrIS

Two Independent Measurements of Stability

- Compare AIRS/CrIS to in-situ changes in CO₂ and tropical SST
- Done with retrievals of dBT/dt for clear-ocean scenes
- AIRS 12-year stability using CO₂: $+0.004 \pm 0.004K$
- CrIS 3-year stability using CO₂: +0.005 ± 0.001 K. (Versus ERA-Interim bias, so error smaller)


Left: CrIS - ERA dBT/dt over 1st three years of CrIS operation.

Sensor stability self-calibrating. SNO inter-calibration nearly 0.01K.

"Transfer" of calibration may be possible without direct overlap.

Introduction	Approach 00000	Connecting Sensors	Trends ●000000	Anomalies 00	PDFs 0000
	T ' C		11		

Radiance Time Series and Anomalies

- Data Set: 2378 channels by 40 zonal bins
- Fit to a constant, a time derivative, and annual sinusoids and harmonics.
- Generate jacobians
- Retrieve geophysical rates and anomalies from radiance rates and anomalies.

Introduction	Approach	Connecting Sensors	Trends	Anomalies	PDFs
			000000		

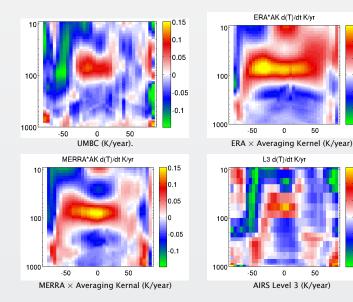
0.15

0.1

0.05

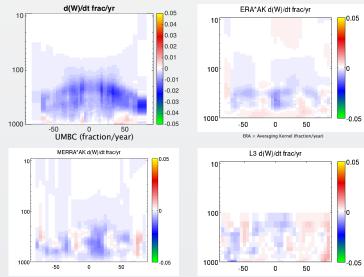
-0.05 -0.1

0.15


0.1 0.05

> -0.05 -0.1

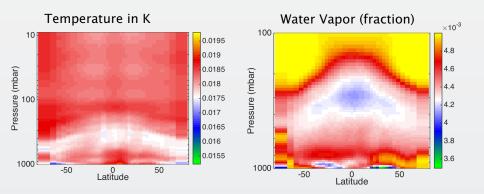
50


50

10-Year Temperature Trends: AIRS

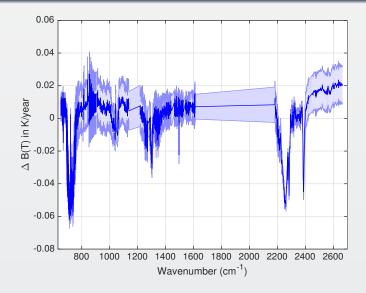
Introduction	Approach 00000	Connecting Sensors	Trends oo●oooo	Anomalies 00	PDFs 0000

10-Year Water Vapor Trends

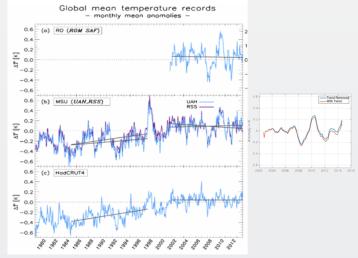


MERRA × Averaging Kernel (fraction/year)

AIRS Level 3 (fraction/year)


Introduction	Approach	Connecting Sensors	Trends	Anomalies	PDFs
			0000000		

Uncertainty Estimates VERY Preliminary: No account for serial correlation, etc.

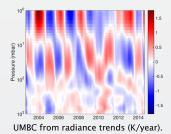

Introduction	Approach 00000	Connecting Sensors	Trends 0000●00	Anomalies 00	PDFs 0000

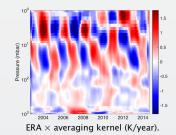
Global Mean Change in Observed B(T) for 12 Years

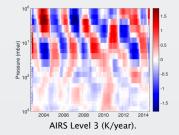
Introduction	Approach 00000	Connecting Sensors	Trends ooooo●o	Anomalies 00	PDFs 0000

The "Hiatus"

I used 200 to 950 mbar retrievals.

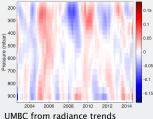

Introduction	Approach 00000	Connecting Sensors	Trends 000000●	Anomalies 00	PDFs 0000
	ture". Nice	d Vartical Dec	مايندام		

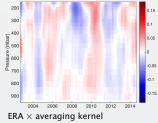

PRELIMINARY: Incomplete Error Analysis


- Karl: 2000-2014 gets 0.0116 \pm 0.0067 K/year (1 sigma!). This is surface air.
- Christy: Almost zero during Hiatus. This is tropospheric average.
- Just for kicks, what do we get?
 - 950-200 mbar: -0.004 K/year \pm 0.018/2 K/year?? (1 σ)
 - 950-700 mbar: +0.006 K/year \pm 0.018/2 K/year?? (1 σ)
- The point is not the absolute numbers (although they are interesting) but that (a) we are in the ballpark with a very very simple and easy approach, and (b) we have vertical sensitivity
- So, maybe everybody is right! This is all on very thin ice.

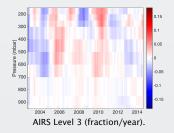
Introduction	Approach 00000	Connecting Sensors	Trends 0000000	Anomalies ●○	PDFs 0000		
27N to 20N Zonal Tomporature Anomalias							

27N to 30N Zonal Temperature Anomalies



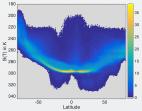


Introduction	Approach 00000	Connecting Sensors	Trends 0000000	Anomalies ⊙●	PDFs
	201111				

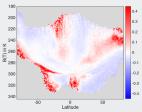

27N to 30N Water Vapor Anomalies

(fraction/year).

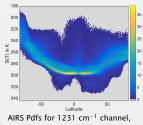
Introduction	Approach 00000	Connecting Sensors	Trends 0000000	Anomalies 00	PDFs ●000

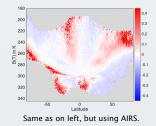

Probability Distribution Functions (PDFs)

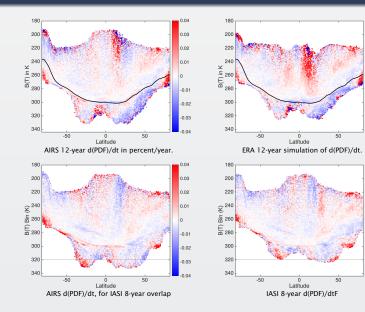
- Avoid data averaging to enhance trends
- More direct evaluation of changes in outgoing thermal radiation
- Helps identify when, where to do better single-footprint retrievals


Almost no manipulation of data, very convincing to the climate community.

		1 1001	1	-		
Introduction	Approach 00000	Connecting Sensors	Trends 0000000	Anomalies 00	PDFs ○●○○	


Radiance PDFs for the 1231 cm⁻¹ Window Channel


CrIS PDFs for 1231 cm⁻¹ channel over 3 years.


CrIS linear rate: Δ PDF/dt percent/year relative to each pixel.

same 3 years as CrIS.

0.04

0.03

0.02

0.01

-0.01

-0.02

-0.03

-0.04

0.04

0.03

0.02

0.01

-0.01

-0.02

-0.03

-0.04

Introduction	Approach 00000	Connecting Sensors	Trends 0000000	Anomalies 00	PDFs ○○○●
Final Thoughts					

- Years between AIRS Product versions: 5+
- Overhead of producing all AIRS products is gigantic
- Time to produce L3 with new algorithm: 4-6 months?
- Very complex algorithm
- Algorithm code not generally available
- Data set is 100 TB+
- No one has suggested how to connect AIRS to CrIS via native retrievals. TBD.
- Algorithm does not estimate errors