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Overview

What can we learn from long-wave operational sounder
hyperspectral record?

Create uniform radiance record: AIRS, IASI, CrIS

Instrument stability (AIRS)

Connecting AIRS with CrIS

Enhance detection capability, lower accuracy requirements
with PDF-based approach

Comparison of AIRS 10-year record with ERA re-analysis using
UMBC’s SARTA RTA for radiances simulation
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Framework for Radiance Climate Data Record
Using AIRS, IASI, CrIS

AIRS L1b
(final processing)

IASI L1c
(day 2 processing?)

CrIS SDR
(reprocessed)

Empirical 
Adjustments
0.2K Level

Improvements 
at EUMETSAT

0.2K Level
Preferred 
Approach

AIRS L1b+

AIRS L1c
(popper fix, filling, freq cal)

Convert AIRS L1c to 
CrIS SDR ILS 

(apodized)

AIRS 10yr+ CDR 
Record == AIRS-c

(If required)
Empirical 

Adjustments
0.2K Level

Convert to 
CrIS SDR ILS

(apodized)

IASI 15yr+? CDR 
Record == IASI-c

Empirical 
Adjustments
0.2K Level

Requirements

Instrument stability: <0.01K 10/5 yrs (AIRS/IASI)
Instrument "overlap": Many AIRS/CrIS SNOs
Issues:
 - Limited AIRS/CrIS SNOs with IASI (72 deg)
 - No perfect SNO's between METOP-1/2
Use bias double-diffs when SNOs lacking
   Test with CrIS/AIRS; copious SNOs

CrIS 15yr? CDR 
Record == CrIS-c

AM Orbit 
Radiance CDRs

PM Orbit 
Radiance CDRs

Radiance 
Binning, etc

Re-analysis and 
Climate Model 
Comparisons

AIRS-c, IASI-c, CrIS-c are
individual instrument products
converted to a common spectral
response (SRF).

Requires:
Instrument stability (CrIS?)

Instrument overlap
(AIRS/CrIS with IASI?)

SRF conversion algorithms

Hopefully, B(T) differences
dominated by on-board
blackbody differences

Cooperation among
instrument teams, and ???
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Conclusion:" An advanced higher accuracy climate observing system would return $50 for every $1 invested in the improved observations !

Why? 
Science is an economic investment by the public.  We will be managing Earth’s 
climate until civilization moves elsewhere.  We currently have no national or 
international climate observing system, nor a plan to create one.   Should we 
invest in one? Is it worth it?!
!
What is  the economic value of  an advanced climate observing system? How 
would you estimate it?  !
!
We have a few traceable estimates of the economic value of weather prediction 
for severe storms, hurricanes, floods and droughts.  Climate scientists often say 
that the results from their research “will inform societal decisions with trillion 
dollar impacts”.  !
!
But is this statement verified and traceable in any way?  How could we quantify 
an economic value to climate science?  Recall that climate change science value 
exists  decades  into  the  future.   Its  value  has  to  be  treated  as  a  risk/benefit 
economic analysis.  A rigorous analysis must take into account the uncertainties 
in climate science, economic impacts, and policy (see Figure 1 below).!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
Science value and economic frameworks are potentially valuable for strategic 
planning  of  the  Earth  observing  system,  as  well  as  communicating  climate 
research  value  to  society.   We  present  in  this  paper  a  new methodology  to 
estimate the economic value to society of advanced climate observing systems.!

How? 

In this case the factor of 4 uncertainty in climate sensitivity causes a factor of 
16 uncertainty in long term economic impacts, which leads to inefficient and 
uncertain solutions for climate change.!
!
Society (and climate science)  views past  climate change through two sets  of 
"fuzzy" lenses.  The first is natural variability in the climate system which acts as 
noise to confuse early signals of anthropogenic climate change.  The second is 
uncertainty in our observations of climate change, including drifting calibration 
of  instruments  or  orbit  sampling  uncertainties.   Figure  2  below  shows  an 
example  of  these  uncertainties  for  observing  one  of  the  critical  measures  of 
climate sensitivity: changes in the amount of global mean solar energy reflected 
back to space by clouds as climate changes.  !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
The black line shows climate trend uncertainty for a perfect observing system 
limited only by one fuzzy lens: that of natural variability.  The dashed lines add 
the absolute calibration uncertainty of the current highest accuracy cloud related 
space  instruments  including  MODIS (cloud  physical  properties)  and  CERES 
(broadband reflected solar radiation to observe SW CRF directly).  The blue line 
shows the accuracy from the future CLARREO (Climate Absolute Radiance and !
Refractivity Observatory) mission which advances accuracy a factor of 5 to 10 
over current instruments (Wielicki et al., 2013).  !
!
CLARREO is designed to serve as reference calibration spectrometers for the 
entire  reflected solar  and thermal  infrared spectrum.  Its  orbit  is  designed to 
underfly all geostationary and low earth orbit satellites with matched time/space/
angle  of  view  observations,  and  thereby  provide  the  SI  standard  reference 
calibration system in orbit to allow instruments such as CERES, MODIS, VIIRS, 
CrIS,  IASI,  Landsat  and  others  to  maintain  highly  stable  calibration  over 
decades, even if gaps in observations occur (Wielicki et al., 2013)!
!
The IPCC climate model range of trend values are shown in the green arrow at 
the lower left  of  Figure 2.   Figure 2 shows that  advances in accuracy can 
advance by 20 years the ability to observe cloud feedbacks and thereby narrow 
uncertainty in climate sensitivity.  !
!
!

Figure 3 shows a similar example for observations of global mean temperature 
trends from space-borne instruments.  The conclusions are similar.!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
Given these results, what would an advance of 15 to 20 years in climate change 
knowledge  mean  in  terms  of  economic  impacts  of  climate  change?   The 
schematic below shows how to test such a concept.  The concept uses the climate 
accuracy framework from Wielicki  et  al.  2013 developed for  the CLARREO 
mission, and combines it with the SCC, 2010 estimates of future climate impacts 
for varying levels of warming, and the DICE 2009 integrated assessment model 
(Nordhaus,  2008)  which  links  models  of  climate  physics,  economic 
development,  and  economic  impacts.   The  schematic  below  shows  the 
dependence  of  economic  impacts  from  climate  change  on  societal  decision 
points, which are in turn dependence on the accuracy of climate observations.!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
The DICE model  is  run for  1000s  of  simulations  varying climate  sensitivity 
(SCC,  2010  distribution),  natural  variability  realizations,  and  emissions 
scenarios.!
!
!
!
!

Before we discuss the results, we need a quick version of Economics 101.  First, 
the global Gross Domestic Product (GDP) per year is about $70 Trillion U.S. 
dollars.  Second, economics calculations use a concept called Net Present Value 
(NPV) to equate investments and returns over long time intervals.  To do this, a 
Discount Rate is used, which varies in the SCC, 2010 report from 5% to 3% to 
2.5%.  The effect of using the nominal 3% Discount Rate is that the economic 
benefits  gained in the future are discounted by 3% per  year,  so that  benefits 
gained 50 years from now are "discounted" by a factor of 1.0350, or a factor of 
4.4.  This means that economic benefits 50 years into the future are decreased by 
a factor of ~ 4.4, while benefits 100 years into the future are decreased by a 
factor of ~ 20.  Finally, the recent financial crisis affected worldwide GDP by a 
few percent.  This is similar to the economic impacts of climate change in the 
second half of this century, which are expected to range from 0.5% to 5% of 
GDP per  year  depending  on  climate  sensitivity  and  the  amount  of  warming 
realized.  Therefore future climate change impacts can range from $0.4T to 
$3.5T per year. !
!
The calculations in this study use a baseline scenario of a societal trigger when 
95% confidence is reached for a global average temperature increase of 0.2C/
decade,  and an advanced full  climate  observing system begins  in  2020.   All 
initial calculations use a simple switch from higher to lower emissions scenarios.!
!
!
!
!
!
!
!
!
!
Table 1 summarizes the results, and shows a NPV of $12 Trillion U.S. dollars 
for the nominal 3% discount rate.  While the CLARREO example of advanced 
accuracy  has  been  used  in  this  initial  estimate,  society  would  never  base  a 
decision on any one set of instruments, so this economic value should be viewed 
as  that  of  an  advanced  full  Climate  Observing  System,  which  CLARREO 
would be a key part of.  If we estimate that such a system would cost 4 times the 
current  investment  in  world  climate  research  of  about  $4B/yr.,  then  over  30 
years, the additional cost in NPV would be about 1/50th of the benefits shown in 
Table 1. Every $1 invested returns $50.  We also examined sensitivity of the 
results to the assumed baseline parameters by changing the warming rate from 
0.2C to 0.3C/decade for the societal decision trigger, by varying the statistical 
confidence required (80 to  99%) and the severity  of  the  emissions  reduction 
scenario (moderate or severe).  In all cases, the economic value remained within 
about  30%  of  the  values  in  Table  1.   The  results  of  this  study  have  been 
published in the Journal of Environment, Systems, and Decisions (Cooke et al., 
2013).  Future developments of this new framework will use recent updates in 
the social cost of carbon estimates, add mitigation costs,  improve the realism of 
societal decision triggers and consider the uncertainties of additional key climate 
change observations including ice sheets, aerosol forcing, and carbon cycle. !
!
References!
Wielicki, B. A. et al., Bull. Amer. Met. Soc. Oct. 2013!
Cooke, R. et al., J. Environ. Sys. Decisions, 2013, open access online.!
US Interagency Social Cost of Carbon Memo, 2010!
Nordhaus, W.D. "A question of balance: weighing the options on global warming 
policies". Yale University Press, New Haven, 2008!

Results 

Figure'1'

Figure'2'

The uncertainty of societal decisions on climate change is strongly affected by 
the uncertainty in the future predictions of climate change.  For example, the 
90% confidence bound for equilibrium climate sensitivity is a factor of 4 (IPCC, 
2013).  Climate sensitivity defines the relationship between an increase in carbon 
dioxide  in  the  atmosphere  and  the  amount  of  global  surface  air  temperature 
change.  Studies of the economic impacts of climate change (Interagency Social 
Cost of Carbon Memo, 2010, hereafter SCC) suggest a quadratic relationship 
between amount of global temperature change and the magnitude of economic 
impacts.  !

Figure'3'

Figure'4'

Table'1'

Can we lower AIRS/CrIS effective calibration accuracy? Yes?
Is the Trend Uncertainty (mean radiance change) the proper
metric? Use PDF/quantile analysis to enhance detection.
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AIRS Stability: Clear Subset Radiance Rate Fits
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OEM Fit Results
All a priori = 0, covariance = ∼3X nominal variability
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AIRS−ERA

AIRS−MERRA

AIRS SST - SST CDR: +0.004 ± 0.006 K

AIRS CO2- In-Situ CO2: -0.004 ± 0.004K



7

OEM Profile Fits, N. Mid Lats: Reasonable Agreement

Blue is OEM retrieval. Green, blue are linear rates derived directly
from MERRA, ERA model fields matched to AIRS clear observations.
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OEM Profile Fits
All-Scene ERA Result Shown

Black is ERA using all model fields, not just those co-located to
AIRS clear subset.
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Connect AIRS to CrIS: SNO Comparisons at 900 cm−1

Ensure agreement versus scene temperature
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More work needed (Univ. Wisc. SSEC has an extensive effort). For
CLARREO, relevant number is difference if uncorrected, is
standard deviation if well-defined offsets can be derived.
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H. Motteler: AIRS –> CrIS ILS Conversion
Robust approach uses AIRS Measured ILS functions.

Convert AIRS ILS to CrIS for long-term radiance record.
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This comparisons shows SNO intercomparisons for 1 day, Oct. 1,
2012. A key part of this work is JPL AIRS Project L1c product,
removing effects of popping channels.
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PDF Measurement Approach
Do not average all-sky radiances.
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Retain more information: PDF rates,
not Radiance Rates

Averaging clear with cloudy
scenes destroys information

Bin (create PDFs) versus
variable related to cloudiness

I used 1231 cm−1 channel B(T):
clearest window channel

Data Set: 10 years of AIRS, only
FOVs on each side of nadir

Bins of B(T) 1231 cm−1, from
190:1:320K

Mean BT spectra in each bin are
stable versus time

All the information is in the
PDFs in each bin
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Diurnal Variability of PDF Rates (5-year rates)
PDFs divided by 25; Mean BT Rates (AIRS) -0.03K, -0.08K (IASI) 0.01K, 0.01K, all 2σ ∼ 0.15K
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Comparisons to ERA Re-Analysis
Re-Analysis heavily used by climate community

CLARREO: compare model to observations in radiance space

SARTA is UMBC RTA, used for AIRS and by NOAA

Developed mapping of model clouds fields to RTA, 2
scattering layers only for now

Comparisons to 100-layer cloud overlap models are quite
good!
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SARTA: 2-cloud layer RTA

100-layer cloud RTA too slow for our purposes. Convert
re-analysis cloud fields into two layers (water, ice). Top of cloud
where optical depth is near unity. Results very similar to PCRTM
(and SARTA 100-layer), far closer than differences to observations.
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Overview of SARTA vs Observations: ECMWF, not ERA
March 11, 2012, 1231 cm−1 channel

Comparisons quite good at this scale.
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SARTA Comparisons to Observations
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Marine Boundary Layer Cloud: Obs vs ERA

Obs: 6-12K Forcing Calc: 2-7 Forcing

ERA MBL clouds too low. SARTA 2-slab and PCRTM agree, not an
issue with 2-slab geometry.
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500 mbar Global Water Channel Time Series
1414 cm−1, No PDF/quantile binning
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Global: ERA captures global variability.
Obs: -0.016 ± 0.01 K/year
ERA: -0.014 ± 0.009 K/year
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1231 cm−1,Global Window Channel Time Series
Simple subtraction of Obs-Calc, daily global binning
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Quantile vs PDF Approach

Previous approach: B(T) 1231 cm−1 is independent binning
variable: find PDFs of B(T) 1231 since closely correlated with
clouds.

New approach: Make cumulative probability distribution
independent variable: find mean value of B(T) 1231 in each
“quantile” bin.

Leads to easier interpetation

Quantiles (cumulative probability distribution): 0:dp:1. Sort B(T) in
ascending order and fill bins.

Usually plot B(T) that goes with each dp bin, rather the cumulative
probability.
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Tropical Western Pacific
Three quantile time series: 0.25, 0.50, 0.75
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Arctic
0.75 probability bin
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Approach very useful for studying extremes. Note warmer winter
radiances.
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Quantile Rates

Subset of some geographic region (TCON regions)

Determine quantiles for each day in 10-year period

Fit time series of quantiles for linear growth rate (remove
seasonal signals).

Examine variability versus models (ERA)
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Tropical Western Pacific

Mean rate: 0.14K ± 0.04K
However, quantile analysis shows cooling near high-end sensitive to surface.
Model shows more clouds compared to observations, but error bars overlap.
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Tropical Eastern Pacific

Mean rate: -0.04K ± 0.02K
Model may have fewer marine-boundary layer clouds over time, but error bars
overlap.
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Arctic

Mean rate: 0.12K ± 0.01K
As per Artic time series, warmer winters, slightly cooler for warm observations.
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Amazonia

Mean rate: -0.09K ± 0.05K
Good agreement with ERA, lower cloud forcing
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Conclusions

Operational sounders should be able to contribute to
CLARREO-like observations

However, many details need careful attention and peer review,
and:

Different groups need to cooperate!

A PDF/quantile approach increases information content
retrieval compared to mean spectra

Eventually need to move from analysis of single channels, to
retrievals of cloudy spectra


