

Climate Trending using Hyperspectral Infrared PDFs

L. Larrabee Strow and Sergio De-Souza Machado

Physics Department and Joint Center for Earth Systems Technology University of Maryland Baltimore County (UMBC)

> IRS 2012 August 2012

Overview

Hyperspectral IR Observing Systems

- NASA-AIRS up 10 years (but a calm 10 years)
- AIRS –> NOAA JPSS CrIS should provide 20+ years
- (AQUA + AIRS could last 15+ years)
- IASI up 5+ years, 2 follow-ons built, IASI-NG in planning
- All agree to 0.1-0.2K level on "Day 1"
- CLARREO cancelled. For now must rely on operational sensors for long-term IR radiance record.

Subjects Addressed/Avoided

- Only 10 years record, but several ENSO events
- Work to stitch together AIRS, IASI, CrIS not discussed here
- Quickly examine AIRS stability
- Concentrate on utility of AIRS PDFs and comparisons to ERA Interim Reanalysis

Products

- Climate-level products with traceable accuracy
- Avoid inversions, convert to geophysical understanding as late as possible
- **•** Limit data volume for ease of use
- Only use accurate, well understood external variables (SST)

Model Validation

- Re-analysis accuracy, esp. long-term trends, clouds
- RTA issues, and mapping of re-analysis fields to RTA grid
- Make case for integration of re-analysis to sensor times
- Close the gap between instrument and product providers and end-science users??

Need to show funding agencies what can be gained from rigorous development of long-term, multi-instrument hyperspectral radiance products. Looking for feedback from science users.

AIRS Stability (and comparison to ERA)

AIRS Clear Scene Subset

- **O** From NASA/GSFC DAAC
- Nominally clear scenes
- **•** Tropics only
- **•** Linear growth rate: 9 years
- \bullet Trop. CO₂ growth evident
- \bullet Strat CO₂ growth cancelled by decreasing T

9-Year Clear Ocean Scene Linear Rates

- AIRS vs SST products: 1231 cm $^{-1}$: 5.6 \pm 8.1 mK/yr
- AIRS vs $CO₂$ in-situ trends: 6.9 mK/yr (error?)
- • AIRS vs N₂O in-situ trends: 10.1 mK/yr (error?)

OEM Retrievals from BT Clear Scene BT Rates

- OEM retrieval of geophysical variables
- \bullet OEM fit: CO₂, N₂O, CH₄, O₃, CFC column adjustments, $H₂O$ profile, T profile
- Regularization: L1 derivative smoothing for H_2O , T profiles.
- A-priori zero for gas rates
- Circles are in-situ rates from NOAA CMDL

- AIRS radiometric drift estimates based on differences between the fitted $CO₂$ and N₂O rates and in-situ. Great potential for various systematic errors.
- AIRS radiometric stability is in the climate range: 0.01K/year or better.

(Addressing larger institutional efforts here)

Assimilation

- Clear only (or above clouds), avoid surface channels.
- Bias tuning (for RTA, instrument, and $CO₂$ for T-profile)
- Low data use, no cloud information, error characterization difficult
- But, multiple data sources and model constraints yield a tremendous re-analysis product

1-D Var Retrievals

- Cloud-clearing with non-gaussian errors hard to characterize
- Cloud property retrievals difficult to impossible under all conditions => sampling errors
- Level 3 data have complicated sampling characteristics/errors

- Can we find ways to use radiances directly to:
	- Ensure full state sampling?
	- Enable rigourous error analysis by converting to geophysical units "as late and simply as possible"?
- Could do this with imagers. But:
	- **1** lot's more data.
	- ² more contamination (water, minor gases), and
	- ³ less stability/accuracy
- Compare to ERA-Interim reanalysis, helps connect to geophysics
- Using multiple channels others producing OLR with hyperspectral.

- Full AIRS record, but only 2 FOVs on either side of nadir, ∼2% of data. (needs improvement)
- Matched to closest ERA-Interim re-analysis grid point ==> relatively large time offsets
- **Simulated radiances computed using UMBC SARTA RTA. Use** very simple PCLSAM approach by Chou et. al. (J. Climate 1999) + Non-LTE + reflected solar.
- *Only two scattering layers: either 1 water, 1 cloud, or 2 water.*
- Developed simple algorithm to convert re-analysis vertical mass profiles to two layers, assuming random cloud overlap.
- Time series analysis used daily averages for region of interest.
- Almost totally concentrate on 1231 cm−¹ AIRS channel. Least amount of H_2O in thermal region. Mostly a surface + cloud channel.
- Often show data in one geographic region using TRANSCOM definitions, ie Tropical Western Pacific

260

240

220

200

 -20

 -30

 -40

50

100

150

 -10 -20

 -30

 -40

50

100

150

Longitude [deg] Longitude [deg] Note: ERA data is lower resolution than ECMWF with 6-hour versus 3-hour time steps.

260

240

220

200

 -80

200 220 280 300 320

ERA B(T) in K

240 260

- ERA clouds spread out more (RTA mapping issue?)
- Lack of deep convection in ERA (well known)

 -80

200

220

240 260 280 300 320

Obs B(T) in K

• Some hotter observed scenes (time mistatch?)

Correlation of Observed and Computed Radiances

- Data from western tropical pacific
- Reasonable correlation for clear
- Low correlstion for deep convective clouds, missing in ERA
- Correlation low for 280-290K, region of broken clouds

Anomaly PDFs reflect ENSO very nicely. *BUT*, all low-BT structure is mostly due to changes in the surface tempearture, NOT changes in cloud forcing.

 $3^{10^{3}}$

R.

 \overline{c}

0

 $\overline{2}$

-6

- Mixing all times, with large spatial extent
- Increase in low clouds at night not strong in ERA. Maybe conversion of ERA cloud to RTA grid missed these??
- Any interest in monitoring with high accuracy, relatively large fields of view?

-60 -150

 -100

Daytime Low Cloud Occurance (ERA? RTA mapping issue?)

- \bullet Low cloud \equiv (2K < B_obs(T) - $B_{\text{c}}calc(T) < 9K$).
- Almost no change if use [3K 8K]
- Using ERA for calc. BUT SST good to 0.2K, and ERA column water very good compared to thresholds.
- **O** If use shortwave, do not need column water,results very similar

50

Longitude

10C

150

180

180 200 220 240 260 280 300 320 340 1231 B(T) in K

180 200 220 240 260 280 300 320 340 1231 B(T) in K

180

Pacific 250 mbar Water

Arctic 1231 cm−¹ TWP

Obs BT Change: 0.06 ± 0.02 K/Year ERA Change: 0.03 ± 0.03 K/Year

PDF rate of change negative near peak, implies more water vapor. However, need to use temperature channels to ensure this is only a change in water.

No potential sampling errors as with existing AIRS products Big event: But, mean change in Obs is +0.15K BUT, 10K max cloud filter based on ERA. Probably very insensitive to details ...

This is just B(T) 960 cm $^{-1}$ minus B(T) 790 cm $^{-1}$ that is large for small ice particles.

Just a reminder that one can also monitor some measure of thin cirrus (and compare to models).

- ERA clear sky fields *very good*, esp. SST (an input)
- 1231 cm⁻¹ channel is mostly surface, clouds, with a little water
- Single channel forcing, R_clearcalc minus R_obs, is just clouds and should be very stable and very accurate.
- However, longwave cloud forcing appears to be exceedingly stable over time and with small SST changes, so not too interesting.

- **•** Probably need a better RTA and better mapping of ERA clouds to RTA vertical grid before making definitive conclusions.
- Hope that this work could argue for getting NWP center(s) to produce a re-analysis at the sensor observing times for better model diagnostics.
- PDFs might be useful; rigorous analysis of their utility for climate trend detection has not been done.
- Hopefully this work could lead to better diagnostics of NWP, and climate model, cloud parameterizations.
- Difficult to say if raw hyperspectral radiance record can diagnose NWP temperature fields. They are really good at removing CO₂!
- • A more sohisticated approach needed for H_2O than presented. Use of temperature channels for water will introduce uncertainties in $CO₂$.