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Overview

Hyperspectral IR Observing Systems

@ NASA-AIRS up 10 years (but a calm 10 years)

@ AIRS -> NOAA JPSS CrlS should provide 20+ years

@ (AQUA + AIRS could last 15+ years)

@ IASI up 5+ years, 2 follow-ons built, IASI-NG in planning

@ All agree to 0.1-0.2K level on “Day 1”

@ CLARREO delayed indefinitely. For now must rely on
operational sensors for long-term IR radiance record.

Subjects Addressed

@ Can a case be made for an IR CLARREO-like product from
existing IR hyperspectral sensors?

@ IR hyperspectral analysis, and trends, using PDF’s
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Framework for Radiance Climate Data Record
Using AIRS, IASI, CrIS

Empirical Improvements e
Adjustments at EUMETSAT e
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(final processing) (reprocessed) (day 2 processing?)

Empirical
Adjustments
0.2K Level

AIRS L1c
(popper fix, flling, freq cal)

Convert AIRS Lic to
CrlS SDR ILS
(apodized)

AIRS 10yr+ CDR
Record == AIRS-c

CDR
Record == CriS-c
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Empirical
Adjustments
0.2K Level

Convert to
CriS SDR ILS
(apodized)

IASI 15yr+? CDR
Record == IAS-c
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PM Orbit

AM Orbit

Radiance CDRs Radiance CDRs

Instrument "overlap": Many AIRS/CrIS SNOs

Limited AIRS/CrIS SNOs with IASI (72 deg)

Requirements

No perfect SNO's between METOP-

Use bias double-diffs when SNOs lacking

Test with CrIS/AIRS; copious SNOs

Instrument stability: <0.01K 10/5 yrs (AIRS/IASI)
Issues:
- 1/2

Radiance
Binning, etc

Re-analysis and
Climate Model

Comparisons

AIRS-c, IASI-c, CrIS-c are
individual instrument products
converted to a common spectral
response (SRF).

Requires:
@ Instrument stability (CrIS?)

@ Instrument overlap
(AIRS/CrIS with IASI?)

@ SRF conversion algorithms

@ Hopefully, B(T) differences
dominated by on-board
blackbody differences

@ Cooperation among
instrument teams, and ??7?
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AIRS/IASI Stability: Use SST and CO, to Test

AIRS Clear Scene Subset
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Clear Ocean Scene Linear Rates:

@ AIRS vs SST products: 1231 cm™': 5.6 + 8.1 mK/yr
@ AIRS vs CO; in-situ trends: 6.9 mK/yr (error?)
@ IASI vs SST, and CO3, 5 years, implies stability < 0.01K/year
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AIRS Stability: Comparison to Reanalysis
Compare to NASA/GMAO Merra, EMMWF ERA

Linear Piecewise Growth - Merra & GlobalView Linear Piecewise Growth - ERA & GlobalView
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Reanalysis used for temperature

CO; retrieved using 791 cm™! line

CO; rate dependent on re-analysis “stability” and AIRS stability
Data derived using 1-day per month

Merra compared to in-situ imples AIRS/Merra stability < 0.01K/year
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IASI Stability: Observed 5-year BT Rates

Raw Observed Rates: dB(T)/dt (K/year)
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Left: Full spectrum of dB(T)/dt (K/year)
Right: Zoom

Ringing in spectra changed with “Day-2" processing
Easy to avoid with 2-point averaging
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IASI Stability: Observed 5-year BT Rates

Two point averaging removes changes to ringing
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Left: Full resolution, and 2-point averaging
Right: Zoom of 2-point averaged rates

Tropospheric -0.06K/year due to CO; evident
Increase in O3
Decrease in CFCs
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IASI Stability: Observed 5-year BT Rates

Compare to CO; in-situ, Tropical SST
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Optimal estimation fit for gas amounts, T(z), Q(z)
Heavily smoothed profiles, L1-type

Zoom on right shows feature at 1020 cm™!

not removed in fit

MLO in-situ CO; rate: 1.99 ppm/year, Fitted rate: 1.99 ppm/year
ERA SST rate: -5 x 10~% K/year, Fitted rate: 0.006K/year

Both of these results imply stability of 0.01K/year or better
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Conversion of AIRS to CrlIS SRF

Very Preliminary

AIRS-CrIS in K
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Channel centers and SRFs for CrIS and AIRS very different
Working on approaches to convert AIRS to CrIS
Use AIRS L1c to fix HdCdTe popping and to fill gaps

Use impulse deconvolution of AIRS, then covert to CrlS
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Detail of Data Set and RTA

Details given at last CLARREO meeting.

@ Using only 2 FOVs on either side of nadir, ~2% of data.

@ Matched to closest ERA-Interim re-analysis grid point ==>
relatively large time offsets

@ Simulated radiances computed using UMBC SARTA RTA.

@ Simple algorithm to convert re-analysis vertical mass profiles
to scattering layers: needs improvement

@ Time series analysis used daily averages for region of interest.

@ Concentrate on 1231 cm~' AIRS channel. Least amount of
H,0 in thermal region. Mostly a surface + cloud channel.

@ Often show data in one geographic region using TRANSCOM
definitions, ie Tropical Western Pacific



PDFs
@00000

Snapshot Comparison: AIRS to ECMWF via SARTA RTA

Image of 1231 cm~! channel B(T), March 10, 2011
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Note: ERA data is lower resolution than ECMWF with 6-hour versus
3-hour time steps.
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Overview of AIRS vs ERA 1231 cm~! PDFs

80

Latitude

AIRS OBS ERA Calc

1

Latitude

3 . 0 -80 i i
200 220 240 260 280 300 320 200 220 240 260 280 300 320
Obs B(T) in K ERA B(T) in K

@ Data from western tropical pacific

@ Reasonable correlation for clear

@ Low correlation for deep convective clouds, missing in ERA
@ Correlation low for 280-290K, region of broken clouds
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Western Tropical Pacific Time PDFs

B(T) and SST (magenta) Anomaly PDF
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Anomaly PDFs reflect ENSO very nicely. BUT, all low-BT structure is
mostly due to changes in the surface tempearture, NOT changes
in cloud forcing.
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Western Tropical Pacific Time: Day-Night PDFs
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@ Mixing all times, with large spatial extent

@ Increase in low clouds at night not strong in ERA. Maybe
conversion of ERA cloud to RTA grid missed these??
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Daytime Low Cloud Occurance (erA? RTA mapping issue?)
ERA

Latitude
Latitude

Longitude

ERA Colorscale Increased

Longitude

@ Low cloud = (2K < B_obs(T) -
B_calc(T) < 9K).

@ Almost no change if use [3K 8K]

@ Using ERA for calc. BUT SST good
to 0.2K, and ERA column water
very good compared to thresholds.

Latitude

@ If use shortwave, do not need
column water, results very similar

150  -100  -50 o
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Amazonia and U.S. PDFs

Amazon Day
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PDFs
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vs ERA

Amazon Night
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PDF Rates : Arctic, Trop. Western Pacific
Arctic TWP
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Note: PDF rates are smooth relative to bin width of 0.5K (> 260K)
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PDF Rates: Continental USA, North Pacific
USA N Pacific
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TWO PDFs: Sensitivity to BT Calibration
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Plot shows, in green, PDF rate error for a 0.2K B(T) offset error
PDF rates relatively insensitive to calibration error!
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Arctic PDF Time Series Example

1231 cm~! PDF Surface Temp PDF (ERA)
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Note: Smoothing not identical in two images



Arctic PDF Anomaly

Linear rate included in anomaly
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Increasing PDF’s 250-270K, decreasing < 250K
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BT 1231 cm~': Mean Rates (no binning)

Accurate ERA SST Rates. ERA Land T_surf Rates?

BT 1231 Observed Rates
@ USA : 0.085 + 0.021 K/yr
@ Arctic: 0.12 £ 0.011 K/yr
@ TWP:-0.072 + 0.011 K/yr

BT 1231 Cloud Forcing (using ERA Surface Temperatures)
@ USA: -0.065 + 0.025 K/yr
@ Arctic: -0.012 + 0.0098 K/yr
@ TWP:-0.013 = 0.012 K/yr

BT 1231 ERA Surface Temperature Rates
@ USA : 0.0071 + 0.0125 K/yr
@ Arctic: 0.104 + 0.007 K/yr
@ TWP:-0.071 = 0.003 K/yr
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Conclusions

@ Probably need a better RTA and better mapping of ERA clouds
to RTA vertical grid before making definitive conclusions.

@ PDFs might be useful; rigorous analysis of their utility for
climate trend detection remains to be done.

@ Other Future Work: (1) examine other channels, (2) derive
geophysical rates from binned spectra

@ Need temperature pdf’s simultaneously with water pdf’s in
order to interpret.

@ Large job of cross-validation and correction between
instruments. Can this be done to the precision needed?
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