Comparison of AIRS Radiance PDF's with ERA Re-analysis Simulated PDFs

L. Larrabee Strow, Sergio De-Souza Machado, Paul Schou, and Scott Hannon

Physics Department and Joint Center for Earth Systems Technology University of Maryland Baltimore County (UMBC)

> AIRS STM April 2012

Introduction ●00	Measurement Approach	ERA RTA Calcs 000000	PDF Rates
Overview			

- NASA HQ: How Achieve CLARREO Objectives? (They don't like retrievals.)
- Can we make "climate" measurements with well characterized errors?
- Approach: avoid retrievals "as long as possible"
- Data Analysis Approach: PDFs (Probability Distribution Functions)
- Concentrate on one AIRS channel: 1231 cm⁻¹
- Compare AIRS measurements to reanalysis products, including cloud fields.
- Long term: build a climate data set with operational sensors

ERA RTA Calcs 000000

AIRS+CrIS = CLARREO IR??

CLARREO "Cancelled"

- CLARREO cancelled after recommendation of National Academy of Sciences and NASA Decadal Survey
- NASA HQ to CLARREO Team: "Explore cost-effective alternatives for achieving some portion of the CLARREO objectives"
- What can be achieved with AIRS + CrIS?

AIRS+CrIS \approx CLARREO IR??

- Use existing sensors: (AIRS + CrIS), IASI
- AIRS: 9+ years (15 possible?)
- IASI set for 15 years
- CrIS looks good, some minor liens + needs extended cal/val
- All three sensors already agree to ~0.1-0.2K, AIRS stability <0.005K/yr?

Hyperspectral IR Climate Record from AIRS/CrIS/IASI

Many Issues (but potentially manageable)

- Relative accuracy of sensors. Need a "tie point".
- Many instrument lineshape issues
- AIRS and IASI stability are excellent
- AIRS: v calibration, relative accuracy among detector arrays
- IASI: v calibration, scene dependent data loss
- CrIS: poor ICT emissivity past 1600 cm⁻¹

This Talk: Climate Level Measurements with AIRS

- Excellent stability (previous talks, see Aumann's talk)
- Stable orbit: is diurnal really needed?
- CLARREO approach: Average Radiances
- Better approach: Radiance binning + PDFs
- 10 years too short for climate response (not forcings)
- Examine ENSO events
- Compare AIRS to Re-analyses (heavily used by climate modelers)

Introduction		Measurement Approach		t Approach	ERA RTA Calcs	PDF Rates
			•0			
			-			

Data Analysis Approach

- Use radiances directly to perserve accuracy: climate trending and extremes
- Use full AIRS spatial resolution
- Convert to geophysical units as "late as possible"
- Easier to assign error estimates to radiances than to L2 products
- Do not average radiances, information lost
- Exploring PDF time series approach to understand trends
- Compare to re-analysis to understand results, understand model and RTA limitations
- Just look at one channel, 1231 cm⁻¹ (surface, clouds)
- Connect to fluxes later, maybe using just a few AIRS channels, and only for time derivatives, not absolute

Model Co	mpariconc		
	00		
Introduction	Measurement Approach	ERA RTA Calcs	PDF Rates

- Sanity check
- Examine the competition: Re-analyses
- Use clear-sky NWP calculations to derive instantaneous cloud radiative forcing (future work)
- Using radiances that go with each BT bin, attempt to derive geophysical rates for each bin (future work).

Concentrate on 1231 cm⁻¹ channel for now. AIRS channel with the most variability since it is the (longwave) channel with the lowest transmission to space.

Data set is two AIRS FOVs, on each side of nadir (2/90 sampling).

		00000	
Introduction	Measurement Approach	ERA RTA Calcs	PDF Rates

- SARTA-CLEAR used in AIRS L2, NOAA extended products
- Spectroscopy in SARTA has been extensively validated using AIRS measurements and radiosonde campaigns
- SARTA-CLOUDY uses the "Parameterization for Cloud Longwave Scattering for use in Atmospheric Models" (PCLSAM) by Chou, Lee, Tsay and Fu *J.Climate* (1999) + NLTE + reflected solar
- Scattering parameters parameterized into effective cloud optical depth $\tau_{scatter}(v) = f(ext(v), \omega(v), g(v))$
- Which can be combined with gas absorption $\tau_{total}(\nu) = \tau_{gas}(\nu) + \tau_{scatter}(\nu)$
- Has been validated for dust storms (MODIS/PARASOL/OMI)
- Emphasis on speed, but
- SARTA-CLOUDY can only handle two slab scattering layers (any combination of aerosols, ice/water clouds.)

Introduction	Measurement Approach	ERA RTA Calcs	PDF Rates
000	00	0●0000	
Cloud Field	Simplification		

- Modify CIWC and CLWC so together they occupy at most two independant slabs
 - Random cloud overlap

-60 -80

-150 -100 -50 0 50 100 150

Lonaitude [dea]

220

200

Measurement Approach

ERA RTA Calcs 000●00 PDF Rates

2011/03/10 : Zoom: West of Australia

AIRS

ERA Reanalysis

Introduction Measurement Approach oo PDF Rates 000000

Zonal Climatology :Cloud Top

MODIS/VIRS CTOP (km) 12 Vw, 2.2 km Ocean 10 D Mw, 2.2 ***** Vi, 8.7 ALTITUDE (km) 8 A Mi. 9.1 6 00 4444 4 AAA, 2 0 -90 -60 -30 30 60 0 90

Measurement Approach

ERA RTA Calcs 00000● PDF Rates

Overview Obs vs ERA Calcs

Ocean, night. SST well known. OBS ERA CALC

Introduction Measurement Approach ERA RTA Calcs PDF Rates

PDF Measurement Approach Do not average all-sky radiances.

Retain more information: PDF rates, not Radiance Rates

- Averaging clear with cloudy scenes destroys information
- Bin (create PDFs) versus variable related to cloudiness
- I used 1231 cm⁻¹ channel B(T): clearest window channel
- Data Set: 8+ years of AIRS, only FOVs on each side of nadir
- Bins of B(T) 1231 cm⁻¹, from 190:1:320K
- Mean BT spectra in each bin are stable versus time
- All the information is in the PDFs in each bin

Measurement Approach

ERA RTA Calcs 000000 PDF Rates

Regional B(T) Binning:TRANSCOM (CO₂ cycle)

 $PDF(t) = a + R * t + \sum_{n=1}^{4} c_n sin(2n\pi t/\tau + \phi_n), R = PDF Rate$

Measurement Approach

ERA RTA Calcs

PDF Rates

Time Series of Averaged Obs/Cal

USA

2004

2006

2010

2008

Time

Introd	uci	
000		

Measurement Approach

300

ERA RTA Calcs 000000 PDF Rates

PDF Comparisons: Night

Artic

Western Tropical Pacific

Eastern Tropical Pacific

-2

-3

-2

-3

A PDF

<u>x 1</u>0⁻³

<u>x 10⁻³</u>

275

280

285

290

295

8

8

dPDF/dt

Bootstrap approach used for dPDF/dt error bounds.

2010

BT Bins Populations

Obs

300

250

300

250

200

2004

2006

2008

BT bin (K) 500

Peak Obs rate corresponds to \sim 0.04K/year. Can determine if clouds or surface using well known SST.

Obs

Calc

300

Introduction	Measurement Approach	ERA RTA Calcs	PDF Rates
			00000000

Tropical Western Pacific: PDF time series

PDF appears to follow ENSO. Have not removed annual cycle from observed PDF.

Wavelet Analysis: Tropical Western Pacific

Applied Morlet wavelet analysis (damped sin wave) to 1231 cm⁻¹ B(T)'s for the peak BT bin. Shaded areas show where wavelet analysis loses applicability.

Measurement Approach

ERA RTA Calcs

PDF Rates

South American Tropical: Amazon

BT Bins Populations

South American Tropical: Day vs Night

Besides deep convective clouds, large differences in daytime. AIRS "hotter" implies cloud fraction differences. Real broken clouds result in higher BTs.

Introduction	Measurement Approach	ERA RTA Calcs	PDF Rates
			0000000

Arctic

BT Bins Populations

dPDF/dt

Introduction	Measurement Approach	ERA RTA Calcs	PDF Rates
			0000000

Liens on PDF Approach and NWP Comparisons

- Modify re-analysis SST to include diurnal variability and evaporative cooling.
- Variable bin widths (near surface for 1231 cm⁻¹ channel)
- Start geophysical rate retrievals from full binned spectra

Measurement Approach

ERA RTA Calcs 000000 PDF Rates

Longwave Cloud Forcing

ERA reanalysis extremly accurate for T,Q and is available everywhere all the time. Can use BT_cal minus BT_obs to compute forcing at 1231 cm⁻¹ very accurately for ocean where SST well known.

Measurement Approach

ERA RTA Calcs

PDF Rates

Global 1231 cm⁻¹ PDFs (PDF's area weighted.)

Measurement Approach

ERA RTA Calcs

PDF Rates

PDF Regional Subsets: Tropical Western Pacific

Measurement Approach

ERA RTA Calcs 000000 PDF Rates

PDF Regional Subsets: Tropical Land + Ocean

Measurement Approach

ERA RTA Calcs 000000 PDF Rates

PDF Regional Subsets: Arctic

Obs

Measurement Approach

ERA RTA Calcs

PDF Rates

PDF Global Land

Obs

2010-2004 Obs Diffs

for lack of clear signal in Calcs?

