# **Gridded Anomaly Retrievals for Climate Trending**

AIRS Virtual Science Team Meeting

L. Larrabee Strow<sup>1,2</sup> and Sergio De-Souza Machado<sup>1,2</sup>

October 5, 2020

<sup>1</sup> UMBC Physics Dept.

<sup>2</sup>UMBC JCET

### **Introduction: Long Term Approach**

- Generate gridded radiance anomalies and use for geophysical anomaly retrievals, using CHIRP Level 1 radiances (nominal 3° x 5° grid averaging 16 days of data).
- This approach, already demonstrated for clear scenes, shows that little a-priori information is needed
- Anomaly retrievals by-pass always troublesome bias adjustments!
  - Both RTA and instrument biases
- Relatively low compute power needed
  - Allows for frequent reprocessing for algorithm development (needed for climate-level products)
  - Quick re-generation of products in instrument stability is improved
  - Allows detailed assessment of uncertainties via frequent reprocessing
  - Hopefully attractive to users far in the future

# **Gridding Schemes**

Grids will likely contain several types of averages:

- · Mean over all radiances
- Mean of hottest (1-5)% radiances for surface T and lower tropospheric anomalies
- Several additional grids containing means over remaining radiances that contain increasing cloud-contamination
- · Allows a "reverse onion-peeling" approach
- Simulations show high-quality surface temperature anomalies trends can be retrieved with a very small percentage of the original data

### **Generation of Datasets**

- We finally were able to install the full L1c radiance data at UMBC
- And, we have enough space to make a copy that is a "transpose" of the normal L1c granules
  - Re-format with full time-series of radiances per grid cell in 16-day files
  - Allows easy experimentation since easy to read in full mission data for single grid cells.
  - Can easily do further higher spatial resolution gridding.
- Note that in theory you want the full time series for a grid cell in order to remove to form the radiance anomalies.
- AIRS L1c "transpose" will be in GSFC DIS netcdf compliant format using back end of operational CHIRP algorithm

We hope to complete this transpose in the next 2 months.

### First Test: All-Scene Averaged Gridded Dataset

- Simple test used to produce 64x72 latitude/longitude grid
- All date averaged into 16-day bins
- Each 16-day grid cell has ~10,000 observations averaged
- Nominally similar to a CLARREO dataset, but with much higher sampling density
- We did NOT separate ascending from descending for this test, wanted to keep it really simple
- This approach allowed us to match to ERA-I for Jacobians quite easily (no subsetting, we just needed average profiles).
- Data record is (407 days, 2645 (400) channels, 64 latitudes, 72 longitudes)

### Goals

- Examine channel BT trends to ensure data looks good
- Possibly do anomaly retrievals (not yet done)
- Determine if all-sky averages precludes high quality trend retrievals of T and H<sub>2</sub>O profiles and surface T.

Retrieval results shown here were done by Sergio in the last two weeks!

### **Global Trends**

### Global 17-Year All-Sky Trends



### CO<sub>2</sub> Trend Removed



- CO<sub>2</sub> trend removed using Jacobians that include water and ice cloud effects
- $\bullet~N_2O$  and  $CH_4$  greenhouse effect remain in spectrum
- Clear trend depression in H2O regions (H2O greenhouse effect)
- Strong strospheric cooling
- Hash is A/B artifacts

### Window Channel B(T) Trends



- Clearly some cloud variability remains after 17 years
- Rough correspondance to surface temperature trends
- Global average: 0.017 K/year

# **Temperature Jacobians for Several Channels**



Will examine global trend maps of these channels

# $655.39 \text{ cm}^{-1} \text{ Trends } (40 \text{ hPa})$





- Low CO<sub>2</sub> sensitivity in polar areas
- Even though peak of Jacobian is 40 mbar, channel still dominated by tropospheric trends in tropics

# 667.78 cm<sup>-1</sup> Channel (2 hPa)





- Quite uniform cooling
- Applying CO<sub>2</sub> correction lowers variability

# 707.85 cm<sup>-1</sup> Channel (200 hPa)



- Extremely uniform BT trends
- Removal of CO<sub>2</sub> trends changes BT trend to positive (warming)
- Some cloud trend contamination in the warm pool

### Retrieved Zonal Temperature Trends



AIRS 17-Year Trends (K/year)



- Reasonable correspondence
- Our AIRS retrievals likely have cloud problems near surface at higher latitudes
- Good agreement for Arctic warming
- ERA has stratospheric warming above the tropical tropopuase, we don't
- Large differences in polar stratospheric cooling, but trend uncertainties there are likely very high (sudden stratospheric warmings, etc.)

# Retrieved Zonal H<sub>2</sub>O Trends



- Higher water amounts where temperature is increasing, and vice-versa
- Lowest levels likely incorrect
- $\bullet\,$  Trends are ~0.4% per year. Need to determine change in relative humidity

# **Surface Temperature Trends**



ERA Mean Trend: 0.019 K/year AIRS Mean Trend: 0.014 K.year

- Our AIRS trend is likely too low
- Cloudy region surface T trends are too negative
- Less cloudy regions with increasing T surface seem OK
- Note: this computation takes ~30 minutes max using 72 nodes

### **Clouds Fraction Trends**





# lce Cloud Fraction Trend

 Ice cloud variability in regions of deep convection

Longitude

-150 -100

• Inverse relationship of cloud fraction to surface T trends (an artifact?)

50 100

### Conclusions

- Generally robust trends retrieved from large-scale spatial and temporal gridding of AIRS radiances
- Clearly climate quality retrievals near the surface should use gridded data that removes thick clouds
- Retrieval of gridded anomaly trends appear to be quite accurate, and trends are largely quite smooth with altitude.
- Clear signals for stratospheric cooling and tropspheric warming seen, extreme warming in the Arctic
- The minor gas retrievals (especially CO<sub>2</sub>) were not perfect, ranging from 1-2 ppm/year.

### **Future**

- Generate new transpose database of radiances
- Grid some percentage of hotter scenes and perform anomaly and trend retrievals and look for any artifacts
- Experiment with anomaly retrievals using gridded data that is cloudier, and likely use clear scene retrievals as a-priori information for cloudier grids.
- Start to experiment with CHIRP radiance data sets to determine quality of gridded CHIRP data that we hope to eventually produce at the GSFC DIS.