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Motivation: Combine AIRS + CrIS + IASI for Long Time Series

• Produce Level 1b CHIRP radiances for retrievals

• Produce Level 3 climate-level gridded CHIRP radiance products
• Goals

• Minimize sensitivity to a-priori estimates, etc.

• Remove artificial sampling biases

• Perform as much analysis in radiance space for error

traceability

• Geophysical Products
• Level 3 T/Q anomalies and trends (and surface T?)

This approach is in principle very simple and quick. Allows

frequency re-processing.

What’s Hard:

• Dealing with clouds

• AIRS radiometric stability estimates (ie. how good?)
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Overview: Two Products Proposed

(1) Multi-Instrument Hyperspectral Radiance Climate Time Series

• 1:30 Orbit: AIRS + CrIS, 9:30 Orbit: IASI

• Convert to common ILS to facilitate inter-instrument radiance calibration

• Produce time/space grids of radiance time series and anomalies for climate

analysis

(2) Level 3 Geophysical Products

• Generate geophysical (T/Q, etc.) "Level 3" anomaly time series

• Trends will be a science product, not a DIS product

Validation/Comparisons

• AIRS/CrIS/IASI inter-comparisons

• Reanalysis: ERA+, MERRA-2

• Microwave

• Surface and SST climatologies

• GPS-RO (Leroy)
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Time Series Length Nearing Climate Scales

CLARREO Schematic: Our Uncertainty?
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Conclusion:" An advanced higher accuracy climate observing system would return $50 for every $1 invested in the improved observations !

Why? 
Science is an economic investment by the public.  We will be managing Earth’s 
climate until civilization moves elsewhere.  We currently have no national or 
international climate observing system, nor a plan to create one.   Should we 
invest in one? Is it worth it?!
!
What is  the economic value of  an advanced climate observing system? How 
would you estimate it?  !
!
We have a few traceable estimates of the economic value of weather prediction 
for severe storms, hurricanes, floods and droughts.  Climate scientists often say 
that the results from their research “will inform societal decisions with trillion 
dollar impacts”.  !
!
But is this statement verified and traceable in any way?  How could we quantify 
an economic value to climate science?  Recall that climate change science value 
exists  decades  into  the  future.   Its  value  has  to  be  treated  as  a  risk/benefit 
economic analysis.  A rigorous analysis must take into account the uncertainties 
in climate science, economic impacts, and policy (see Figure 1 below).!
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Science value and economic frameworks are potentially valuable for strategic 
planning  of  the  Earth  observing  system,  as  well  as  communicating  climate 
research  value  to  society.   We  present  in  this  paper  a  new methodology  to 
estimate the economic value to society of advanced climate observing systems.!

How? 

In this case the factor of 4 uncertainty in climate sensitivity causes a factor of 
16 uncertainty in long term economic impacts, which leads to inefficient and 
uncertain solutions for climate change.!
!
Society (and climate science)  views past  climate change through two sets  of 
"fuzzy" lenses.  The first is natural variability in the climate system which acts as 
noise to confuse early signals of anthropogenic climate change.  The second is 
uncertainty in our observations of climate change, including drifting calibration 
of  instruments  or  orbit  sampling  uncertainties.   Figure  2  below  shows  an 
example  of  these  uncertainties  for  observing  one  of  the  critical  measures  of 
climate sensitivity: changes in the amount of global mean solar energy reflected 
back to space by clouds as climate changes.  !
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The black line shows climate trend uncertainty for a perfect observing system 
limited only by one fuzzy lens: that of natural variability.  The dashed lines add 
the absolute calibration uncertainty of the current highest accuracy cloud related 
space  instruments  including  MODIS (cloud  physical  properties)  and  CERES 
(broadband reflected solar radiation to observe SW CRF directly).  The blue line 
shows the accuracy from the future CLARREO (Climate Absolute Radiance and !
Refractivity Observatory) mission which advances accuracy a factor of 5 to 10 
over current instruments (Wielicki et al., 2013).  !
!
CLARREO is designed to serve as reference calibration spectrometers for the 
entire  reflected solar  and thermal  infrared spectrum.  Its  orbit  is  designed to 
underfly all geostationary and low earth orbit satellites with matched time/space/
angle  of  view  observations,  and  thereby  provide  the  SI  standard  reference 
calibration system in orbit to allow instruments such as CERES, MODIS, VIIRS, 
CrIS,  IASI,  Landsat  and  others  to  maintain  highly  stable  calibration  over 
decades, even if gaps in observations occur (Wielicki et al., 2013)!
!
The IPCC climate model range of trend values are shown in the green arrow at 
the lower left  of  Figure 2.   Figure 2 shows that  advances in accuracy can 
advance by 20 years the ability to observe cloud feedbacks and thereby narrow 
uncertainty in climate sensitivity.  !
!
!

Figure 3 shows a similar example for observations of global mean temperature 
trends from space-borne instruments.  The conclusions are similar.!
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Given these results, what would an advance of 15 to 20 years in climate change 
knowledge  mean  in  terms  of  economic  impacts  of  climate  change?   The 
schematic below shows how to test such a concept.  The concept uses the climate 
accuracy framework from Wielicki  et  al.  2013 developed for  the CLARREO 
mission, and combines it with the SCC, 2010 estimates of future climate impacts 
for varying levels of warming, and the DICE 2009 integrated assessment model 
(Nordhaus,  2008)  which  links  models  of  climate  physics,  economic 
development,  and  economic  impacts.   The  schematic  below  shows  the 
dependence  of  economic  impacts  from  climate  change  on  societal  decision 
points, which are in turn dependence on the accuracy of climate observations.!
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The DICE model  is  run for  1000s  of  simulations  varying climate  sensitivity 
(SCC,  2010  distribution),  natural  variability  realizations,  and  emissions 
scenarios.!
!
!
!
!

Before we discuss the results, we need a quick version of Economics 101.  First, 
the global Gross Domestic Product (GDP) per year is about $70 Trillion U.S. 
dollars.  Second, economics calculations use a concept called Net Present Value 
(NPV) to equate investments and returns over long time intervals.  To do this, a 
Discount Rate is used, which varies in the SCC, 2010 report from 5% to 3% to 
2.5%.  The effect of using the nominal 3% Discount Rate is that the economic 
benefits  gained in the future are discounted by 3% per  year,  so that  benefits 
gained 50 years from now are "discounted" by a factor of 1.0350, or a factor of 
4.4.  This means that economic benefits 50 years into the future are decreased by 
a factor of ~ 4.4, while benefits 100 years into the future are decreased by a 
factor of ~ 20.  Finally, the recent financial crisis affected worldwide GDP by a 
few percent.  This is similar to the economic impacts of climate change in the 
second half of this century, which are expected to range from 0.5% to 5% of 
GDP per  year  depending  on  climate  sensitivity  and  the  amount  of  warming 
realized.  Therefore future climate change impacts can range from $0.4T to 
$3.5T per year. !
!
The calculations in this study use a baseline scenario of a societal trigger when 
95% confidence is reached for a global average temperature increase of 0.2C/
decade,  and an advanced full  climate  observing system begins  in  2020.   All 
initial calculations use a simple switch from higher to lower emissions scenarios.!
!
!
!
!
!
!
!
!
!
Table 1 summarizes the results, and shows a NPV of $12 Trillion U.S. dollars 
for the nominal 3% discount rate.  While the CLARREO example of advanced 
accuracy  has  been  used  in  this  initial  estimate,  society  would  never  base  a 
decision on any one set of instruments, so this economic value should be viewed 
as  that  of  an  advanced  full  Climate  Observing  System,  which  CLARREO 
would be a key part of.  If we estimate that such a system would cost 4 times the 
current  investment  in  world  climate  research  of  about  $4B/yr.,  then  over  30 
years, the additional cost in NPV would be about 1/50th of the benefits shown in 
Table 1. Every $1 invested returns $50.  We also examined sensitivity of the 
results to the assumed baseline parameters by changing the warming rate from 
0.2C to 0.3C/decade for the societal decision trigger, by varying the statistical 
confidence required (80 to  99%) and the severity  of  the  emissions  reduction 
scenario (moderate or severe).  In all cases, the economic value remained within 
about  30%  of  the  values  in  Table  1.   The  results  of  this  study  have  been 
published in the Journal of Environment, Systems, and Decisions (Cooke et al., 
2013).  Future developments of this new framework will use recent updates in 
the social cost of carbon estimates, add mitigation costs,  improve the realism of 
societal decision triggers and consider the uncertainties of additional key climate 
change observations including ice sheets, aerosol forcing, and carbon cycle. !
!
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Results 

Figure'1'

Figure'2'

The uncertainty of societal decisions on climate change is strongly affected by 
the uncertainty in the future predictions of climate change.  For example, the 
90% confidence bound for equilibrium climate sensitivity is a factor of 4 (IPCC, 
2013).  Climate sensitivity defines the relationship between an increase in carbon 
dioxide  in  the  atmosphere  and  the  amount  of  global  surface  air  temperature 
change.  Studies of the economic impacts of climate change (Interagency Social 
Cost of Carbon Memo, 2010, hereafter SCC) suggest a quadratic relationship 
between amount of global temperature change and the magnitude of economic 
impacts.  !

Figure'3'

Figure'4'

Table'1'
AIRS, CrIS, IASI are all very stable
CLARREO has removed us from this figure!

AIRS 14-Year global trends
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CHIRB Processing Flow

Anomaly + 
Trend Retrievals

Double FFT
Conversion to CHIRP
(0.8,0.6,0.4 cm) OPD

AIRS2CrIS 
Conversion
 to CHIRP

Radiometric Bias 
Adjustments 

(to SNPP CrIS)

Level 2 Retrievals
using CHIRP

Store:
Anomalies/L3 

(Both Geo + BT)

Subset?

This Talk

IASI L1c AIRS L1c
CrIS L1b

(0.8,0.8,0.8 cm)
OPD

Store CHIRP
"L1d"

Time/Space 
Gridding of 
Radiances

Add MERRA2 
Simulated 
Radiances

CHIRP: (Common or Climate) Hyperspectral InfraRed Product

• CHIRP "OPD" = 0.8/0.6/0.4 cm (Allows AIRS conversion to CrIS)

• CrIS OPD = 0.8/0.8/0.8 cm

• CHIRP MW/SW 75%/50% lower resolution than CrIS
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Anomaly and Trend Approach: (Result Shown Previously)

Linear solution for trends with a-priori state = 0 given by,

dx
dt
=
(
KT S−1

ε K + R−1
)−1

(
KT S−1

ε
dBT
dt

)
• x is the atmospheric state

• K are the B(T) Jacobians

• Sε is the observation error covariance matrix.

• R combines empirical regularization (Tikonov L1-type) and the

a-priori covariance-based terms

Sε covariances represent inter-annual variability and instrument

stability. They introduce significant constraints compared to L3

time derivatives, still implementing.

Jacobian state from standard all-sky retrievals or from re-analysis;

high accuracy not needed.
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This Talk

• Concentrate on 16 (or 15) year radiance trends

• AIRS Stability

• Cloud variability on 15 years, how to minmize

Cocentrate on global, zonal trends to emphasize instrument

issues

Data Sets

• Start with a ~1% random, area-weighted subset (for quick

processing)

• Produce 40 area weighted zonal bins (all channels) for 5475

days

• Proudce 48 x 90 deg. area-weighted gridded trends (1

channel)

• All data is L1c (frequency calibrated)
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Stability: Clear Ocean Trends
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• This is AIRS 16-year clear ocean BT trend

• Shortwave has issues, not used for science trending

• Compare to ERA vs latitude for "good channels"

• Modify ERA SST to account for effect of water vapor on BT trends 7



Stability: AIRS 1231 cm−1 Trends vs ERA SST Trends

• ERA SST modification due to water vapor absorption

• These are quite accurate, use Aumann’s "split-window" to correct

• AIRS trending hotter by ~0.003K/year

• Differences mostly 30-40 deg. lat??, look at time-dependence 8



Stability: OEM Retrieval of Clear Ocean CO2 Trends vs MLO
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• OEM retrieval off due to co-linearity of CO2 and T

• Determine OEM offset by retrieval CO2 from ERA trend (no CO2)

• Correct OEM CO2 trend for this co-linearity

• Compare this to NOAA MLO; AIRS B(T) trend ~+0.003K/year
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Climate Quality AIRS Channels

OEM retrieval fitting residual for clear-ocean trends

All L1c with A/B=0
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About 1000 L1c channels good for trending
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Global B(T) Trends: Descending Node

All L1c Channels:
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Global B(T) Trends: Descending Node

Now only A/B Fixed Channels:
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Global B(T) Trends: Descending Node

Now only A/B = 0 Channels (equally weighted)
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Global B(T) Trends w/ 2-σ Unc: CO2 Removed using MLO

• CH4 dominates MW (follows ESRL trends)

• H2O B(T) trends smaller than T-channel trends

• Window channel and tropospheric channel trends the same!

• Stratospheric channels show cooling 14



Compare T-channel to WV-channel Trends (vs Latitude)

• Color is latitude: note "lime green"

• If relative humidity is constant, ∆ BT = 0 for water channels

• Compare absolute and relative trends among these two channels

• Both approaches suggest ~+8%/K increase in specific humidity,

maybe slightly lower relative humidity 15



How Does the T vs H2O Trend Vary with Latitude?
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• Plotting latitude variability relative to the global mean ratio of

dBTT chan vs dBTWater chan

• Suggests relative drying in convective regions, moistening nearby

• These results largely independent of any calibration drifts

• These data are from "real?" climate trends, not ENSO-like proxies
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Radiance Gridding: Minimize Cloud Variability

• Radiance gridding combines clear + cloudy scenes

• Clouds change slowly, but regional variability seen after 16

years

• Want simple approaches to evaluating gridded radiances

trends
• Possible approach (suggested several years ago)

• Grid not ony mean radiance but:

• Grid by rough measure of "clear"

• Nominal approach
• Generate radiane anomaly

• Separate 10% hottest scenes in anomaly radiance, from colder

(more cloudy) scenes.

• Minimized cloud interferene for surface trending

• Crude test done here
• Forget anomaly

• Just trend 10% hottest scenes in yearly gridded bins

• Just one channel, 917 cm−1
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15-Year Global Trends: 10% of Hottest Scenes (Desc node)

AIRS Trends (K/year)

AIRS Global trend: 0.019K/year

AIRS Global std: 0.043K/year

ERA Surface Trends for these Scenes

ERA Global trend: 0.019K/year

ERA Global std: 0.049K/year

• Quite similar, no cloud patterns?

• High cancellation of trends, but not to zero

• Very simple, accuracy can be modeled
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Compare Trends to Full ERA Sampling

AIRS Trends (K/year) ERA Surface Trends for these Scenes

• Better selection of "clear" will help

• Nothing wrong with looking at hot

extremes

ERA Surface Trends (full Sampling)
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Global Variability for This 10% Hot Subset

AIRS Std (over time, in K) ERA Std (over time, in K)

• Quite similar!

• No obvious cloud patterns?

• High North polar variability

• Just an example of what can be done without retrievals!
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Conclusions

• Good progress in defining "good" channels for CHIRP

• CHIRP radiometric stablility evaluation on-going

• Need to examine time-dependence more carefully

• CHIRP "L1c" product nearly ready for implementation (need

AIRS L1c)

• CHIRP gridded "L3" product being assessed

• Very valuable to have all scenes paired with re-analysis

• Several type of gridding seem worthwhile (all sky, gridded by

nominal % clear)

• OEM retrievals of T/Q zonal trends will continue with an

emphasis on observation error co-variances and better all-sky

cloudy jacobians
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