Studying Changes in PDFs of Selected AIRS channels

Sergio DeSouza-Machado, Andrew Tangborn and L. Larrabee Strow

Joint Center for Earth Systems Technology and UMBC Department of Physics

AIRS STM - Sept. 13, 2016

Overview

- AIRS has now made 14 years of high quality TOA radiance measurements
- We have previously shown that the instrument stability is sufficient to determine linear rates surface temp., column *CO*₂, temp. and wv profiles
- We have also shown that probability density functions (PDFs) of clear sky PDFs can provide insight into non-Gaussian climate variability and stochastic forcing of the atmosphere
- In this talk, we further show how PDFs can provide information on the rate of change that would be missed when looking at changes to mean properties
- We focus on a single channel (1231*cm*⁻¹), sensitive to surface temp., column water and clouds.
- Observations are allsky, night, over land and ocean

AIRS Obs, Clear Calcs and Cloud Forcing PDFs at the equator

Over ocean, night time

Mean PDF from 13 years of allsky observations from $1231 cm^{-1}$, all latitudes.

Window channel sensitive to surface temperature, clouds and column water vapor

• PDF scale is indicated by the colorbar. The x and y axes show the latitude and BT bins.

Rate of change in BT PDF for 1231*cm*⁻¹

- Linear rate from regression of $1231 cm^{-1}$ PDF.
- PDF rate shows how occurences of a particular BT range are changing per year.
- Color bar scale shows whether BT is increasing.
- Gray lines are where rate < uncertainty

Cloud radiative effect

- Mean cloud forcing over 13 years.
- Clear Calculated Bt Obs using ERA.
- Averaged on 1x0.5 degree grid.

Observation count for cloud forcing ranges

- Observations per pixel.
- 1% of data over 13 years.

Observation count - continued

- Observations per pixel.
- 1% of data over 13 years.

Mean Cloud Forcing over 13 years, zonal average

- Color bar indicates PDF value.
- Large values indicate deep convective clouds.
- Values near zero indicate clear sky.

Percent rate of change in cloud forcing $(1231 cm^{-1})$.

- Rates form linear regression of cloud forcing over 13 yrs
- Color scale indicates percent change in PDF per year
- Regions with dots have uncertainty greater than rate

Mean Total Cloud Fraction over 13 years

11

Percent rate in change of cloud fraction

- Sum rate of change in cloud forcing from 5 K to maximum
- Uncertainty from linear regression

Imager determination of cloud fraction

- ISCCP = count how many cloudy 5 km pixels there are in a 280 km region, seen by satellite? http://isccp.giss.nasa.gov/cloudtypes.html
- PATMOS : from AVHRR, cf from tests using IR/NR/VIS channels (Foster et. al., Remote Sens. 2016, 8(5), 424; doi:10.3390/rs8050424)

Reduction of Uncertainties over Time

- Linear regression errors decrease with longer data sets
- We calculate the regression errors for 1-13 year linear fits and extrapolate to 25 years

Conclusions

- AIRS can give you high-quality pseudo-veritcal cloud percent changes, and we are starting to reach climate level measurements
- Linear rates of cloud forcing can be used to obtain cloud fraction rate dependence on latitude and level
- Longer term IR observation records should lead to higher accuracy
- Introduced a simple and easily implemented definition of partial cloudiness that agrees with eg ISCCP and PATMOS
- Preliminary results, more work needed

Welcome, William

Cloud Forcing PDF with ERA Calcs, Ocean Only

• Shows much less negative forcing over oceans

Cloud forcing PDF at equator, ERA Calcs, one month

• Sum of these PDF values gives the cloud fraction.

Cloud forcing rates, ERA Calcs, ocean only

• Shows high clouds increasing over tropics and northern mid-lat.

