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Abstract14

NASA’s Atmospheric Infrared Sounder has been in near-continuous operation since15

September 2002. The ∼ 3 million daily spectral observations contain detailed informa-16

tion about surface and atmospheric temperature, water vapor and trace gases such as17

CO2 and CH4, as well as clouds and aerosols. In this paper we obtain climate thermo-18

dynamic trends using 20 years of AIRS observations by working exclusively with the trends19

observed in the AIRS radiance time series. This is achieved by first binning the observed20

spectra into nominal 3 × 5 degree latitude/longitude spatial subsets using 16 day inter-21

vals, after which a quantile-based algorithm selects nominally clear scenes for each grid22

box in order to construct the clear scene radiance spectrum time series. De-seasonalized23

spectral anomalies and spectral trends are then obtained from the time series, which are24

converted into geophysical trends using a physical retrieval for each grid box.
:::
This

:::::::::
approach25

:
is
::::::::::
completely

::::::::
different

:::::
from

::::::::::
traditional

::::::::::
operational

::::
use

::
of

::::::::
infrared

::::
data

:::
for

:::::::::
trending,

::::::::
whereby26

:::::::::::::::
anomalies/trends

:::
are

:::::::::
generated

::::::
either

:::::
after

:::::
daily

:::::::::
retrievals,

::
or

:::::
after

:::::::::::
assimilation

::::
into

::::::
NWP27

:::::::
models.

:
Our approach rigorously ties the derived geophysical trends to the observed ra-28

diance trends, and requires orders-of-magnitude fewer computational resources and time29

than re-analysis or traditional Level 2 retrievals. The retrieved trends are compared to30

trends derived from four other products : ERA5, MERRA2 reanalysis model fields and31

the NASA Level3 AIRS v7 and NASA Level 3 CLIMCAPS v2. Our retrieved surface tem-32

perature trends agree quite well with ERA5 re-analysis, CLIMCAPS L3 and the GISS33

surface climatology trends. Atmospheric temperature profile trends exhibit some vari-34

ability amongst all these data sets, especially in the polar stratosphere. Water vapor pro-35

file trends are nominally similar amongst all data sets except for the AIRS v7 which ex-36

hibits trends with a different sign in the mid troposphere. Note that infrared sounders37

lose water vapor sensitivity close to the surface making intercomparisons of column water38

trends problematic. Spectral closure between observation trends versus those computed39

by running all the NWP re-analysis and official NASA L3 monthly fields though a (clear40

sky) radiative transfer code is discussed, with the major differences arising in the wa-41

ter vapor sounding region.42

::::::
Plain

:::::::::::
Language

:::::::::::
Summary43

:::
The

::::
new

::::::::::
generation

::
of
::::::::
infrared

:::::::::
sounders,

::::::::
designed

:::
for

:::::::
weather

::::::::::
forecasting

:::::::::
purposes,44

::::
have

:::::
been

::
in

:::::
orbit

:::::::
around

:::
the

::::::
Earth

:::
for

::
a

::::
long

:::::::
enough

::::
time

:::
to

::::::
enable

::::::::
anomaly

::::
and

::::::::
trending45

::::::
studies

:::
for

:::::::
climate

:::::::::
purposes.

::::::::::::
Traditionally

:::::
their

:::::
daily

::::::::
obtained

::::::::
radiance

:::::
data

:::
has

:::::
been46

::::
used

:::
for

::::::::::
operational

::::::::::::
atmospheric

:::::
state

:::::::::
retrievals,

::
or

:::::::::::
assimilation

::::
into

::::::::::
Numerical

::::::::
Weather47

:::::::::
Prediction

:::::::
models,

:::::
after

::::::
which

:::::::
climate

::::::::
anomaly

:::::::
studies

:::
are

::::::
made.

::
In

::::
this

::::::
paper

:::
we

:::
use48

:::
the

::::
raw

::::::::
radiance

:::::::
spectral

:::::
data

::
to

:::::
form

::::::::
radiance

:::::::::
anomalies

::::
and

:::::::
trends,

::::
after

::::::
which

:::
we49

::
do

::
a

:::
one

:::::
step

:::::::::::
atmospheric

:::::
state

::::::::
retrieval.

:::::
This

:::::
novel

:::::::::
approach

:::
has

::::
the

::::::
benefit

:::
of

:::::
using50

::::
only

::::::
stable

::::::::
channels

:::::::
together

:::::
with

::::::
easily

::::::::::
understood

:::::::::::
assumptions

::::
and

::::
well

::::::
tested

::::::::
retrieval51

:::::::::
algorithms

:::
to

::
do

::::
the

:::::
trend

:::
or

::::::::
anomaly

::::::::::
geophysical

:::::::::
retrieval,

:::::
which

::::
has

:::
full

:::::
error

::::::::::::::::
characterization.52

53

1 Introduction54

NASA’s Atmospheric Infrared Sounder (AIRS) became operational in September55

2002, as the first of the new generation of low noise, high stability hyperspectral sounders,56

making
:::
Top

:::
of

:::::::::::
Atmosphere

:::::::
(TOA)

::::::::
radiance observations at a typical 15km (at nadir)57

horizontal resolution. Follow on instruments with similar characteristics and abilities in-58

clude Eumetsat’s Infrared Atmospheric Sounding Interferometer (IASI) and NOAA’s Cross59

Track Infrared Sounder (CrIS), operational since June 2007 and March 2012 respectively.60

The latter two already have follow on missions planned till the 2040s, and together these61

three sounders will provide scientists with a 40 year high quality, near continuous ob-62

servational dataset for climate anomaly and trending studies.63
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Infrared radiances contain a wealth of information, including but not limited to sur-64

face temperature, atmospheric temperature and water amount, and mixing ratios of green-65

house gases such as carbon dioxide CO2, CH4 and N2O.
::::::::::::
Measurements

:::
by

::::::
visible

::::::::
imagers66

:::::
which

:::::
have

::
∼

::
1

:::
km

:::::::::
horizontal

::::::::::
resolution

::
or

::::::
better

:::::::::::::::::
King et al. (2013)

::::::
suggest

::::::
global

:::::
cloud67

:::
free

::::::::
fractions

:::
of

::
∼

:::::
30%,

:::
but

::::
the

:::
15

:::
km

::::::::
footprint

:::
of

::::::
typical

::::::::
sounders

::::::
means

:::
at

:::::
most

:::
5%68

::
of

:::
the

:::::::::::::
hyperspectral

:::::::::::
observations

::::
can

::
be

::::::::::
considered

:::::::::::
“cloud-free.”

:
Current operational NASA69

L2 products come from cloud clearing the observed radiances, which introduces errors70

and
:::
use

:::
the

:::::::
method

:::
of

:::::
cloud

:::::::
clearing

:::
on

::::::::
observed

:::::::::
radiances

:::
in

::::::
partly

::::::
cloudy

:::::
scene

::::::::::
conditions71

:::::
before

::::::
doing

:::
the

:::::::::::
geophysical

::::::::
retrieval.

:::::
The

:::::
cloud

:::::::
clearing

::::::::
method

:::::
solves

:::
for

:::
an

::::::::
estimate72

::
of

::::
clear

:::::::
column

:::::::::
radiances

:::
by

::::::::::
examining

::::::::
adjacent

:::::
Fields

:::
of

:::::
View

:::::::
(FOVs)

::
to

::::::::
estimate

::::
the73

:::::
cloud

::::::
effects

:::
on

::::::::
observed

:::::
allsky

::::::::::
radiances,

::::::::
assuming

::::
any

::::::::::
differences

:::
are

::::::
solely

::::
due

::
to

::::::::
different74

:::::
cloud

::::::::
amounts

::
in

:::::
each

:::::
FOV,

::::
and

:::::::::::
significantly

::::::::
increases

:::::::::::
geophysical

::::::::
retrieval

:::::
yields

::::
(to75

:::::
about

::::::::
50-60%)

::::::::::::::::::::::
Smith and Barnet (2023)

:
.
:::::
This

::::
does

:::::::::
introduce

:
increased noise in the cloud76

cleared radiances of the lower atmosphere sounding channels; in addition the
::::::::::
subsequent77

retrieval depends on the first guess (which is a neural net for AIRS v7 and MERRA2 re-78

analysis for CLIMCAPS v2). The The reader is referred to Susskind et al. (2003); Smith and Barnet (2020)79

::::::::::::::::::::::::::::::::::::::::::::::::
Susskind et al. (2003); Smith and Barnet (2020, 2023) for more details.80

In this paper we work directly in radiance space and form either anomalies or trends81

from the underlying well characterized and understood radiances Strow and DeSouza-82

Machado (2020), in order to do a geophysical trend or anomaly retrieval. The work pre-83

sented here, once the averaged/sorted data is available, can be processed in hours to days,84

and can be duplicated by small research groups with ease. Moreover, our novel approach85

has zero temperature a-priori and minimal water vapor a-priori. This completely sidesteps86

time variability and the accuracy of the a-priori which causes errors in the retrievals,87

and ensures our work examines trends directly inferred from the radiances versus those88

from traditional methods, leading
:
.
::::
This

:::::
leads

:
to more unbiased results that directly high-89

light the conditions (for example stratospheric water vapor) where the sensor has lim-90

ited sensitivity.91

The approaches used in this work are therefore very different than climate anoma-92

lies or trends from reanalysis products or traditional Level 2 retrievals, neither of which93

are tailored for climate trends. Reanalysis uses a wide range of observations and are only94

created within very large organizations, and represent the most commonly used climate95

data sets. They
::::::::
products

:
assimilate individual sensor scenes

::::
from

::::::
many

::::::::
different

:::::::::::
instruments,96

and may have discontinuities as different instruments come online or go offline. Tradi-97

tional Level 2 (and Level 3 products derived from Level 2) retrieve the atmospheric state98

for individual scenes (or effective cloud-cleared radiance derived from a 3x3 grid of in-99

dividual scenes). Both reanalysis and Level 2 products require large computational re-100

sources, that preclude full dataset re-processing to help fully understand trends. A main101

characteristic of traditional L2 retrievals is the requirement for a good a-priori state for102

each inversion, making errors in the a-priori difficult to distinguish from true variabil-103

ity in the data, especially with regard to trends.104

The stability and accuracy of the AIRS instrument is documented in recent work105

on analyzing 16 years of AIRS radiance anomalies over cloud-free ocean Strow and DeSouza-106

Machado (2020). Geophysical retrievals on the anomalies yielded CO2, CH4, N2O and107

surface temperature time series that compared well against in-situ data from NOAA Global108

Monitoring Laboratories (GML) trace gas measurements and NOAA Goddard Institute109

of Space Studies (GISS) surface temperature data respectively. A significant difference110

between this paper and Strow and DeSouza-Machado (2020) is the nominally clear scenes111

used
:
in

:
this paper are selected uniformly from all over the Earth, while the clear scenes112

in the latter were zonal averages which were sometimes concentrated in certain regions.113

In this paper we expand upon our initial zonal clear sky analysis, to derive geophys-114

ical trends from 20 years (September 2002 - August 2022) of AIRS measurements over115

∼ 3 × 5 degree tiles covering the Earth, chosen such that the number of observations116
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in each tile is roughly equal. An important concept introduced is spectral closure, whereby117

the observed clear sky spectral radiance trends are compared to spectral trends produced118

by running the monthly reanalysis or official NASA retrieved AIRS L3 products through119

an accurate clear sky radiative transfer code; close agreement in different sounding re-120

gions (such as 640-800 cm−1 for temperature and CO2, 1350-1640 cm−1 for water va-121

por, 1000-1150 cm−1 for O3) between the computed and actual observed spectral trends122

imply that trends from those geophysical parameters used in the computations are re-123

alistic while disagreement suggests otherwise. A companion paper will utilize the geo-124

physical trend results to derive Outgoing Longwave Radiation (OLR) trends and non-125

local clearsky feedback parameters. Nominally clear scenes for each tile are picked out126

using a quantile approach; from the time series, radiances trends are made over the en-127

tire Earth, from which geophysical trends are retrieved.128

Observed infrared spectral trends from AIRS has already been a focus of earlier129

work by Huang et al. (2023) who studied a slightly shorter time period (2002-2020) while130

Raghuraman et al. (2023) converted the radiances to Outgoing Longwave radiation (OLR),131

but neither study involve retrievals from spectral trends to geophysical trends. Instead132

they convert various model trends (such as ERA5) to spectral trends and compare against133

the observed spectral trends. Our earlier work shows we can accurately account for the134

effects of GHG forcings (Strow et al., 2021). In this paper we remove these GHG forc-135

ings from the observed AIRS spectral trends to concentrate on atmospheric temperature136

and water vapor and surface temperature, while the papers by Huang et al. (2023); Raghu-137

raman et al. (2023) include the GHG forcings in the model generated spectral trends.138

Another noteworthy examination of the time evolution of high spectral resolution infrared139

radiances (converted to spectral outgoing longwave radiation (OLR) fluxes) by (Whitburn140

et al., 2021) covered 10 years (2007-2017) of IASI observations. They confirmed that the141

IASI-derived fluxes agreed well with increases in GHG gas concentrations and El-Nino142

Southern Oscillation (ENSO) events within that time frame. A more recent paper Roemer143

et al. (2023) used the 10 year IASI data to derive allsky longwave feedback spectral com-144

ponents (water vapor, CO2, window, ozone) and total values, while also estimating clear145

sky feedback values.146

We will refer to our results as the AIRS Radiance Trends (AIRS_RT). Compar-147

isons are made against monthly output from the European Center for Medium Weather148

Forecast fifth generation reanalysis (ERA5) Hersbach et al. (2020) and NASA’s second149

generation Modern-Era Retrospective analysis for Research and Applications (MERRA2)150

Gelaro and Coauthors (2017), and also against the official monthly AIRS L3 products151

which are AIRS v7 L3 Susskind et al. (2014); Tian et al. (2020) and CLIMCAPS v2 L3152

Smith and Barnet (2019, 2020). Detailed geophysical trends and spectral closure stud-153

ies are presented for the ascending (daytime (D)), descending (nightime (N)) and D/N154

averages.155

2 Datasets used in this study156

Three main types of datasets are used in this study. The first is the AIRS L1C ra-157

diance dataset we analyzed for this paper, which has both daytime (D) and nightime (N)158

(ascending and descending) views of the planet. Second is the monthly operational L3159

retrieval data, which are the AIRS v7 and the CLIMCAPS v2 products, also separated160

into D/N data. Finally we also compared to trends from ERA5 and MERRA2 monthly161

reanalysis model fields. The ERA5 monthly dataset is available in 8 averaged time steps,162

so we match to the average AIRS overpass times and compute (D/N) data over the 20163

years, while MERRA2 monthly model fields are only available as one time step; included164

here for completeness we mention the NASA GISS surface temperature dataset, which165

like MERRA2 is only available as one set per month
:
a
::::::::
monthly

:::::
mean. This means four166

of the datasets : AIRS_RT (from AIRS L1C), AIRS L3 and CLIMCAPS L3, and ERA5167

are separable into D/N, while the other two (MERRA2 and GISS) are only available as168
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a diurnal averaged value. We describe these datasets in more detail below. In addition169

we also briefly mention other datasets that we use.170

2.1 The AIRS instrument and L1C dataset171

The Atmospheric Infrared Sounder (AIRS) on board NASA’s polar orbiting EOS/Aqua172

platform has 2378 channels, covering the Thermal Infrared (TIR) spectral range (roughly173

649-1613 cm-1 ) and shortwave infrared (2181-2665 cm-1 ). The full widths at half max-174

imum satisfy ν/δν ∼ 1200. The (spectral dependent) noise is typically ≤ 0.2K. The orig-175

inal L1b radiance dataset suffers from spectral gaps and noise contaminated data as de-176

tectors slowly fail. These limitations are addressed using a 2645 L1c channel dataset, where177

spectral gaps and some of the noise “pops” are filled in using principal component recon-178

struction Manning et al. (2020) and is the dataset used to subset radiances analyzed in179

this paper. However we note that the results described in this paper used only the ac-180

tual observed radiances in pristine, stable channels described in Strow et al. (2021) and181

none of the synthetic channels. The Aqua platform is a polar orbiting satellite with 1.30182

am descending (night time over equator) and 1.30 pm ascending (daytime over equator)183

tracks. Each orbit takes about 90 minutes, with the 16 passes yielding almost twice daily184

coverage of the entire planet. About ∼ 3 million AIRS spectral observations have been185

obtained daily since AIRS became operational in late August 2002. The instrument has186

provided data almost continuously since then though there have been some shutdowns187

(each spanning a few days) such as during solar flare events.188

In this paper we use the re-calibrated 2645 channel L1C radiance data Strow and189

DeSouza-Machado (2020) instead of the 2378 L1B data. 20 years (spanning September190

1, 2002-August 31, 2022) of AIRS L1C radiance data is gridded into 4608 tiles covering191

the Earth : 72 longitude boxes which are all 5◦in width, and 64 latitude boxes which are192

approximately 2.5◦in width at the tropics but wider at the poles to keep the number of193

observations per 16 day intervals (which is the repeat cycle of the AIRS orbit on the Aqua194

satellite) roughly the same. This way there are ∼ 12000 observations per 16 days per tile,195

which are roughly equally divided between the ascending/daytime (D) and descending/nigh-196

time (N) tracks. In this paper we discuss results for both the ascending and descending197

tracks using a retrieval based on the longwave (LW) and midwave (MW) regions of the198

spectrum (640-1620 cm−1 or 6-15 µm).199

In this paper our trend retrievals use only the AIRS channels are stable in time,200

as quantified in Strow et al. (2021). For example the shortwave (SW) channels are drift-201

ing at a higher rate than the LW/MW channels, which can lead to incorrect surface tem-202

perature rates, and are avoided in this paper. Similarly there are are many channels in203

the LW and MW whose detectors are drifting in time, and which are also not used here.204

For example there are some higher wavenumber (shorter wavelength) channels past the205

ozone band which have a significant drift in time, possibly due to changes in the polar-206

ization of the scan mirror coating with time. Therefore compared to other AIRS oper-207

ational products used in this paper, our results use channels that are demonstrated to208

have high stability Strow et al. (2021). We do note that some of the observed drifts in209

the AIRS channels stabilized after 6 years, so their impact is reduced when looking at210

20 year trends.211

In “clear sky” scenes, the window region would be dominated by the effects of water212

vapor continuum absorption, which is largest for hot and humid tropical scenes and almost213

negligible for cold, dry scenes. Scattering and absorption by liquid and ice clouds also214

affects the window region (800-1000 and 1100-1250 , and 2400-2800 ). For each tile, we215

use the 1231.3 observation as our window channel (AIRS L1C channel ID = 1520), and216

form the quantiles of the observed Brightness Temperature (BT) for each 16 day observation217

period. BT 1231 therefore serves as a measure for the cloudiness of an observation : if218

there are no or low clouds, it will effectively measure the surface temperature, but as the219
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clouds get thicker and higher, it will measure colder temperatures. Quantiles 0.50, 0.80,220

0.90, 0.95 and 0.97 were among those chosen; the first would be considered the “median”221

observation, containing clear and cloudy scenes. In a subsequent section we show Q0.90222

onwards can be considered “almost free of clouds.” Our retrievals using this dataset are223

referred to as in what follows.224

2.2 Reanalysis Model fields225

The ERA5 fifth generation reanalysis product from the European Center for Medium226

Range Weather Forecasts is freely available on monthly timescales from the Copernicus227

Climate Data Store. This monthly dataset is output at 37 pressure levels at 0.25◦horizontal228

resolution Hersbach et al. (2020), which is further subdivided into eight 3-hour averages229

per month (corresponding to 00,03,06,...21 UTC). For each month from September 2002-230

August 2022 we downloaded the surface temperature and pressure fields, as well as at-231

mospheric temperature, water vapor and ozone fields. These are then colocated to each232

tile center using 2D spatial interpolation, as well as time interpolated according to the233

average AIRS overpass time as a function of month. From the resulting monthly time-234

series of reanalysis model fields for each tile, we generated (a) thermodynamic trends for235

surface temperature, air temperature, water vapor and ozone model fields (b) a 20 year236

average thermodynamic profile in order to produce jacobians for the linear trend retrievals237

(c) by using the model fields as input to the clear sky SARTA radiative transfer code Strow,238

Hannon, DeSouza-Machado, et al. (2003) a monthly time series of clear sky radiances239

for each tile was generated, from which we could compute radiance trends. We did this240

for both the ascending and descending datasets.241

The MERRA version 2 (MERRA2) re-analysis used in this paper is the second gen-242

eration Gelaro and Coauthors (2017) product from NASA’s Global Modeling and As-243

similation Office. The monthly data we use is available on 42 pressure levels at a hor-244

izontal resolution of 0.5◦× 0.625◦, but only one monthly mean diurnally averaged out-245

put is available per month. Similar to the ERA5 output, we colocated the MERRA2 sur-246

face temperature, atmospheric temperature, water vapor and ozone fields to our tile cen-247

ters for each month starting September 2002 in order to produce a time series of radi-248

ance and model output, from which radiance and thermodynamic trends could be com-249

puted for comparisons against other datasets in this study; similar to above we also gen-250

erated a monthly time series of clear sky radiances for each tile, from which we could com-251

pute clear sky radiance trends based on MERRA2.252

The NASA Goddard Institute of Space Studies (GISS) surface temperature data253

v4 surface temperature data 2023 (2005); Lenssen et al. (2019) is a monthly dataset based254

primarily on near surface temperatures land stations, and data from ships and buoys.255

As with MERRA2 we obtained one monthly mean dataset per month, which we could256

not separate into descending (N) or ascending (D) tracks.257

2.3 AIRS L3 Products258

NASA routinely produces two retrievals from the AIRS L1C data observed each259

day, which are AIRS v7 Susskind et al. (2014); Tian et al. (2020) and CLIMCAPS v2260

Smith and Barnet (2019, 2020). Both use the cloud clearing process but there are sig-261

nificant algorithmic differences; in particular the AIRS v7 product is initialized by a neu-262

ral net, while CLIMCAPS uses MERRA2 for its initialization. The L2 products are then263

individually turned into L3 monthly products, for both the ascending (daytime) and de-264

scending (nighttime) data. The timeseries of thermodynamic profiles were used as in-265

put to the clear sky SARTA RTA to generate radiances, after which radiance trends and266

thermodynamic trends are also produced.267
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2.4 Other L3 Products268

The Microwave Limb Sounder (MLS) monthly binned water vapor (H2O) mixing269

ratio dataset Lambert et al. (2021), which contains data at spatial coverage ±82◦ lat-270

itude, at a spatial resolution of 4◦× 5◦and useful vertical range between 316 and 0.00215271

hPa was used in this paper to improve retrieval trends in the upper atmosphere.272

3 Filtering the Observational Data for clear scenes273

Here we discuss the “clear scene” selection from all the observed data stored for each274

of the 72 × 64 tiles. Ideally we would prefer to use a MODIS cloud fraction product (1275

km) colocated to the 15 km AIRS footprints, but this is presently unavailable. Our ear-276

lier work used an uniform clear flag over ocean Strow et al. (2021) which will not work277

well over land because of surface inhomogeneity. In this section we discuss an alterna-278

tive clear filter based on the hottest 10 percent of AIRS observations that are present279

inside any 16 day tile, over any location.280

3.1 Observed BT1231 Distributions281

The left panel of
::::::::
radiances

:::::::::
measured

::
in

::::::::
thermal

:::::::
infrared

::::::::
window

::::::
region

:::::::::
(800-1000282

cm−1
:::
and

:::::::::
1100-1250

:
cm−1)

::::
are

::::::::::
dominated

::
by

::::
the

::::::
effects

::
of

::::
the

::::::
surface

::::::::::::
temperature,

::::::
water283

:::::
vapor

::::::::::
continuum

::::::::::
absorption

::::
and

::::::::::::
cloud/aerosol

:::::::
effects.

::::
The

::::::
effects

::
of

::::::
water

:::::
vapor

::::::::::
continuum284

:::::::::
absorption

::
is
:::::::
largest

::
in

::::
hot

:::
and

:::::::
humid

:::::::
tropical

::::::
scenes

::::::::::
(depressing

::::
the

:::::::::::
observations

:::::::
relative285

::
to

:::::::
surface

::::::::::::
temperatures

::
by

::::::
about

::::
5-6

::
K,

::::::
which

:::::::
reduces

:::
to

:::::
about

::
2
::
K

:::
at

::
±

:::
50◦

:
)
::::
and

::
is286

::::::
almost

:::::::::
negligible

:::
for

:::::
cold,

:::
dry

::::::
scenes

:::::
(less

::::
than

::
1
::::
K).

:::::::::
Scattering

::::
and

::::::::::
absorption

:::
by

:::::
liquid287

:::
and

:::
ice

::::::
clouds

::::
also

:::::::
affects

:::
the

:::::::
window

::::::
region

::::::
(Deep

::::::::::
Convective

:::::::
Clouds

::::
can

:::::::
depress

:::
the288

:::::::
window

:::::::
channel

:::::::::::
observations

:::
by

:::
as

:::::
much

::
as

::::
100

::
K

:::::::
relative

:::
to

:::::::
surface

:::::::::::::
temperatures).

::::
For289

::::
each

::::
tile,

:::
we

:::
use

::::
the

::::::
1231.3

:
cm−1

::::::::::
observation

:::
as

:::
our

:::::::::::::
representative

:::::::
window

::::::::
channel

::::::
(AIRS290

::::
L1C

:::::::
channel

:::
ID

::
=

::::::
1520),

:::
as

::
it

::
is

:::::::::
minimally

:::::::::
impacted

::
by

:::::
weak

::::::
water

:::::
vapor

::::::
lines.

::::::::
Changed291

::
to

::::::::::
Brightness

:::::::::::
temperature

:::::
(BT)

::::
the

::::::::::
observation

::
in
::::
this

:::::::
1231.3 cm−1

:::::::
channel

:::::::::
(BT1231)292

::::::::
therefore

::::::
serves

::
as

::
a

:::::::
measure

::::
for

:::
the

:::::::::
cloudiness

:::
of

::
an

:::::::::::
observation

:
:
::
if
:::::
there

::::
are

:::
no

::
or

::::
low293

::
or

::::::::
optically

::::
thin

:::::::
clouds,

::
it

::::
will

:::::::::
effectively

::::::::
measure

:::
the

:::::::
surface

::::::::::::
temperature,

::::
but

::
as

:::
the294

:::::
clouds

::::
get

::::::
thicker

::::
and

:::::::
higher,

::
it

::::
will

::::::::
measure

:::
the

::::
cold

::::::
cloud

:::
top

:::::::::::::
temperatures.

::::
For

:::
any295

:::
tile

::::::
during

::::
any

:::
16

:::
day

:::::::::::
observation

::::::::
periods,

::
we

::::
can

::::::::
compute

:::::::::
quantiles

::
Q

::::::
based

::
on

::::
the296

::::::::
observed

:::::::
BT1231

:::
to

::::::
screen

:::::::
between

:::::::
cloudy

::::
and

::::::::
partially

::::
clear

:::::::
scenes.

::::
We

:::::
chose

::::::::
different297

:::::::
BT1231

::::::::
quantiles

::::
(so

:::::::
quantile

:::::::
Q0.XY

::::
will

::::
have

::
a
:::::::::
numerical

:::::
value

::::::::::::::
BT1231Q0.XY :::::::::

associated298

::::
with

:::
it)

::::
and

:::::
show

:::::
below

::::
the

::::
data

:::::::::
contained

::::::::
between

::::::
Q0.90

::::
and

::::::
Q1.00

:::
can

:::
be

::::::::::
considered299

::::::
“almost

::::
free

:::
of

:::::::
clouds.”

:
300

Figure 1 shows the zonally averaged histograms for a
::
all

:::
the

::::::::
BT1231

:::::::::::
observations301

::
for

::
a
::::::
chosen

:
16 day timestep

:
in

::::
the

:::::
form

::
of

:
a
:::::::
zonally

:::::::::
averaged

:::::::::
histogram

:::::::::::
(normalized302

::::::::::
probability

::::::::::
distribution

:::::::::
functions

::::::::
(PDFs)),

:::::
with

:::::::
latitude

:::
on

::::
the

:::::::
vertical

::::
axis

::::
and

:::::::
BT1231303

::
on

::::
the

:::::::::
horizontal

:::::
axis.

::::
The

::::::::
colorbar

::
is

:::
the

:::::
PDF

::::::
value,

::::
and

:::
we

::::
used

:::::
data spanning Au-304

gust 27, 2012 - September 11, 2012 which is approximately half way through the 20 year305

AIRS mission dataset used in this paper. The colorbar is the mean histogram (normalized306

probability distribution functions (PDFs)) using the data in that 16 day time period. From307

this we plot the
::::::
curves

:::::
show

:::
the

:
zonally averaged BT1231 values of the minimum (Q0.00)308

::::::
Q0.00)

::
in

:::::
dark

:::::
cyan,

:::::
mean

::::::
(thick

::::
red), mean, median (Q0.50

::::::
Q0.50

::
in

::::::
orange), maximum309

(Q1.00
:::::
Q1.00

::
in

:::::
light

:::::
cyan); also shown are the

:
a

:::::::
handful

::
of

:::::
other

:
zonally averaged BT1231310

valuesof Q0.80, Q0.90 ,
:::
for

::::::::
example

:::::::
Q0.80,

:::::
Q0.90

:
(thick black curve), Q0.95 and Q0.97.311

The BT1231 channel has the lowest expected absorption due to water vapor in the longwave312

portion of the spectrum, and so is expected to sense the surface temperature unless the313

scene is cloudy in which case it would be expected to sense the cloud top temperature.314

In this way the histogram should exhibit the characteristics of the cloud conditions observed315

in the 16 day period.
:::::
Q0.95

::::
and

:::::::
Q0.97.

::::
The

::::::::::::
distributions

:::
are

:::::::
skewed

::
to

::::
the

:::
left

:::::::::
(negative316

:::::::::
skewness),

::
as

::::::::::
confirmed

::
by

::::
the

:::::
mean

::::::
being

:::
less

:::::
than

:::
the

::::::::
median.

::::
We

::::
also

:::::
point

:::
out

:::::
that317
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::::
even

::::::
Q0.80

::::
sees

:::::
much

::
of

::::
the

:::::::
surface

::::
from

::::
the

::::::::
southern

:::::::
tropics

::
to

:::
the

:::::::::
northern

:::::
polar

::::::
region.318

The
:::
220

::
K

:::::::::::
horoizontal

::::
axis

:::::
cutoff

:::::::
means

::
we

:::
do

::::
not

:::
see

:::
the

:::::
very

::::
cold

:::::
(190

:::
K)

:::::::::::
observations319

::::
over

:::
the

::::::
winter

::::::::::
Antarctic.

:
320

:::
The

:
figure shows the expected qualitative features, for example (1) the tropical PDFs321

peak at around 295 K, but show some warmer observations, as well much colder obser-322

vations (below 230 K) corresponding to Deep Convective Clouds (DCC); this gives a dy-323

namic range of almost 100 K at the tropics (2) the BT1231 observed over the Southern324

Polar (polar winter) regions are much colder than the BT1231 observed over the North-325

ern Polar (polar summer) regions and (3) the reddish peaks in the 30◦N - 40◦N are a com-326

bination of the marine boundary layer (MBL) clouds and warmer summer land temper-327

atures.328

It is evident the distributions are skewed to the left (negative skewness), as confirmed329

by the mean being less than the median. We also point out that even Q0.80 sees much330

of the surface from the southern tropics to the northern polar region. The right panel331

of Figure 1 shows the same information, except presented as a cumulative histogram, with332

a value of 0 at the hot end (340 K) and 1 at the cold end (180 K); again one sees the Q0.90333

quantile envelopes the hottest 10% of the observations as expected. The cutoff of 220334

K in the plots does not allow the plot to extend to show the very cold (190 K) observations335

over the winter Antarctic.336

Zonally averaged BT1231 histograms for an 2012/08/27 - 2012/09/11 timespan (colorbar)337

and quantiles (curves). The thick black curve is the Q0.90 quantile (and above) used in338

this paper, and is very close to the maximum. The left hand panel shows the normalized339

histogram (probability distribution function) as a function of latitude and temperature340

bin; the right hand panel shows the cumulative distribution function, though starting341

from the hotter side (cdf(340 K) = 0.0, cdf(180 K) = 1.0).342

Measurements by visible imagers which have ∼ 1 km horizontal resolution or better343

King et al. (2013) suggest global cloud free fractions of ∼ 30%, but the 15 km footprint344

of typical sounders means at most 5% of the hyperspectral observations can be considered345

“cloud-free.” In the tropics, the higher amounts of water vapor means the observed BT1231346

for a clear scene would be reduced by a 5-6 K due to water vapor continuum (which on347

average reduces to about 2 K at ± 50, and 1 K at the polar regions). Figure 1 shows on348

average the
::
on

:::::::
average

:::
the

:
cloud effect at the tropics is an additional modest 20 K (dif-349

ference between Q0.90 and Q0.50
:::::
Q0.90

::::
and

::::::
Q0.50) compared to the 100 K dynamic range.350

This is because the cloud fractions and cloud decks in the individual observations have351

effectively more clouds (with larger cloud fraction in the FOV) lower in the atmosphere352

than higher up; the net effect is that in the window region the atmosphere is on aver-353

age radiating from the lower (warmer) altitudes, and so Q0.80 to Q1.00 onwards
::::::
spectra354

:::::
whose

::::::::
BT1231

::::::
values

:::
are

::::::
larger

::::
than

:::::::::::::
BT1231Q0.80,:see much of the surface emission as355

well.356

357

:::
We

::::
now

:::
use

::::
the

:::::
above

:::::
plots

:::
to

:::::
select

:::::::
“almost

::::::
clear”

::::::
scenes.

::::
For

::::
any

::::
one

::::
tile,

:::
we

:::::
define358

::
set

:::::::
Ψ0.XY ::

to
:::::
have

:::
all

:::::::::::
observations

:
i
::::::
whose

::::::::
BT1231

:::
lies

::::::::
between

::::::::
quantiles

:::::::
Q0.XY

::::
and359

::::::
Q1.00,

::::::::::::::::::::::::::::::::::::::::::::
{i | BT1231Q0.XY ≤ BT1231(i) ≤ BT1231Q1.00}.:In what follows in this subsection360

we use an “integrated” or “cumulative” quantile wherein Q0.90 now means all scenes between361

Q0.90 and Q1.00 (maximum observed BT) are considered
:::
.XY

::
is

::::
the

::::::::
radiances

:::::::::
averaged362

::::
over

::
all

::::
the

:::::::::::
observations

::
i
:::::
which

::::
are

::
in

:::
the

::::
set

::::::
Ψ0.XY ,

:::::::
namely

:
363

rQ0.XY (ν) =
1

N0.XY

∑
i∈Ψ0.XY

ri(ν)

::::::::::::::::::::::::::::

(1)
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Figure 1.
::::::
Zonally

::::::::
averaged

:::::::
BT1231

:::::::::
normalized

::::::::::
histograms

::::::::::
(probability

::::::::::
distribution

::::::::
functions)

::
as

::
a
:::::::
function

::
of

:::::::
latitude

::::
and

::::::::::
temperature

::::
bin,

:::
for

::
an

::::::::::
2012/08/27

:
-
::::::::::
2012/09/11

:::::::
timespan

:::::::::
(colorbar)

::::
and

:::::::
quantiles

::::::::
(curves).

::::
The

:::::
thick

::::
black

:::::
curve

::
is
:::
the

::::::
Q0.90

:::::::
quantile

::::
(and

:::::
above)

:::::
used

::
in

:::
this

::::::
paper,

::::
and

:
is
:::::
very

::::
close

::
to

:::
the

:::::::::
maximum

:::::
Q1.00

::::::::
quantile.

:::::
where

:::::
ri(ν):::

are
::::
the

::::::
N0.XY::::::::::

individual
:::::::::::
observations

::
in

:::
set

:::::::
Ψ0.XY .

:::
In

::::
this

:::::::
section

:::
we

::::
only364

:::
use

:::
the

::::
ν =

:::::
1231 cm−1

:::::::
channel,

::::
but

::
in

:::::
later

:::::::
sections

:::
we

::::::
easily

:::::
form

::::::::
averages

:::
for

::
all

:::::
2645365

::::::::
channels,

::
at

::::
any

:::
16

::::
day

::::
time

::::
step

:::
for

::::
any

::::
tile.366

To further investigate if the scenes chosen using this definition can be considered367

:::
We

::::::
tested

::::::::
different

:::::::
quantile

::::
sets

::::::
Ψ0.XY:::

to
:::
see

::::::
which

::::
one

:::
can

:::::::
reliably

:::
be

::::::::::
considered

::
to368

::::::
provide

::
a
:
nominally “cloud free” , we compare to

::::::
global

:::::::
dataset,

::::
and

:::::
chose

::::
the

::::::
Q0.90

:::::::
average369

::
(ie

:::::::
defined

:::
as

::::::::
averaged

::::
over

::::
the

:::::
Ψ0.90 ::::

set)
::
as

::::
the

:::
one

:::
to

:::
use

:::
for

::::
the

::::
rest

::
of

::::
this

::::::
paper,370

:::::
unless

:::::::::
explicitly

::::::
stated

:::::::::
otherwise.

:::::
The

::::
tests

:::::::::
primarily

::::::::
involved

:::::::::::
comparisons

:::
to scenes371

produced by the uniform/clear sky filter described in Strow and DeSouza-Machado (2020)372

for the same August 27, 2012 - September 11, 2012 sixteen day timespan. This latter fil-373

ter selects clear scenes by both testing for uniformity (to within 0.5 K) across a 3 × 3374

grouping of AIRS scenes and also using a criteria that the observed window channel ob-375

servations should be within ± 4 K of clear-sky simulations using thermodynamic param-376

eters supplied by reanlysis
::::::::
reanalysis

:
models. The results are shown in the left hand plot377

of Figure 2, plotted on a 1◦× 1◦grid. We note in this plot the uniform/clear scenes that378

are plotted are limited to those over ocean, and for solar zenith less than 90 ◦(daytime),379

which automatically filtered out many of the views over the (wintertime) Southern Po-380

lar region. Immediately apparent are the gaps produced by the uniform/clear filter e.g.381

in the Tropical West Pacific or off the western coasts of continents where there are clouds.382

The gaps can be changed by e.g. changing the 4K threshold to allow more or fewer scenes383

through the filter.384

The center plot shows the scenes selected by the integrated
:::
for

:::
all

::::
tiles,

::::
the

:::::::
daytime385

:::::
scenes

::::::::
selected

:::
for

:::
the

:
Q0.90 filter

::::::
average

:
for the same time period, on the same 1◦×386

1◦grid. Compared to the left hand plot,
::
the

:::::::
spatial

::::::::
coverage

::
is

::::::
almost

:::::::::
complete,

:
as the387

Q0.90 filter
::::::
average

:
always has the hottest 10% of the observations, the spatial coverage388

is almost complete : gaps are only visible .
:::
At

::::
this

::
1◦

:::::::::
resolution,

:::::
used

:::
for

::::::::::
comparison

:::::
with389

:::
the

::::::::::::
uniform/clear

:::::
grid

::::
filter

:::::::::
described

::
in
::::
the

::::::::
previous

::::::::::
paragraph,

:::::
gaps

:::
are

::::
seen

:
in regions390
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Figure 2. Clear scenes for the same 2012/08/27 - 2012/09/11 timespan selected by (left) an
uniform/clear sky filter and (center) the Q0.90 integrated filter

::::::
average described in this paper.

The right hand plot shows the mean (over ocean) observed BT1231 as a function of latitude, for
the two selections; the difference is about 0 K ± 1 K in most region except in the southern mid-
latitudes where the integrated Q0.90 filter

::::::
average produced scenes that were about 1 K cooler

on average.

where there are for example mountains, or in the desert regionswhere other areas are even391

warmer. We note that increasing the quantile threshold to 0.95 or 0.97 did not introduce392

the gaps seen in the left hand (uniform/clear) map
::
for

::::::::
example

:::
the

:::::
local

:::::::::::
topography

::::::
means393

:::::::::::
observations

::::
over

::::::::::
mountains

::::::
would

::
be

::::::
colder

:::::
than

:::
the

:::::::::::
surrounding

:::::::
coastal

:::
or

:::::
plain

::::::
regions.394

::::
This

::
is

:::
not

::
a
:::::::
concern

:::::
since

::::::::
zooming

:::::
back

::::
out

::
to

:::
the

:::::::
coarser

::
3◦

:
×
::
5◦

:::
tile

::::::::::
resolution,

:::
will395

::::::
include

::::::
Q0.90

:::::
data

:::
for

:::
the

::::::::
quantile

::::
and

::::::::
trending

::::::::
analysis.

:
396

To compare the mean observations we filter away
::::::
remove the over-land and over-397

polar region data from the center plot. The right hand plot shows the mean observed398

BT1231 from the 1◦× 1◦grid from the uniform/clear sky filter as a function of latitude,399

compared to the 1◦× 1◦grid from the integrated Q0.90 scenes. The difference between400

the uniform/clear versus integrated Q0.90 filter
:::::::
average is within about 0.25 K ± 1 K401

across the southern tropics to the northern midlatitudes, though the bias rises to about402

1 K by about -50◦S. We consider this an acceptable difference, as we could tune the thresh-403

olds for the uniform/clear filter to e.g. change the areal coverage and/or number of clear404

scenes and hence comparisons to the Q0.90 scenes.405

406

We ran these tests for three
:::
The

:::::::
results

:::::::::
presented

::
in

::::
this

::::::
section

:::::
have

:::::
been

:::::::
checked407

::
for

:::::::::::
robustness,

:::::
using

:
other 16 day intervals in 2012, spanning the four seasons. The overall408

global bias and standard deviation for the 1231 channel between the co-located 1× 1grids409

by the uniform/clear filter and by the Q0.90 filter stayed fairly uniform, typically about410

0.25 K ± 1 K. From the information presented in this section, we
:::
We conclude that for411

any 16 day timestep the integrated
::::::::
radiances

:::::
used

::
in

::::
the Q0.90 filter

::::::
average

:
(a) pro-412

duces almost complete spatial coverage of the Earth, (b) selects scenes whose average413

BT1231 is very close to the average BT1231 from scenes selected using an uniform/clear414

filter (c) trends from that quantile typically differ by less than ± 0.002 K /yr
::::
yr−1 from415

the other quantiles and (d) this selection produces spectral trends which compare well416

against those obtained from the quality assured binned AIRS CCR data record Manning417

(2022). Together these imply the integrated Q0.90
::::::
average

:
is an acceptable proxy for “clear418

scenes”. For the remainder of the paper we drop the word “integrated” and
::::::::
therefore

:
con-419

sider Q0.90 as consisting of nominally clear observations whose BT1231 lies between the420

90th quantile and hottest observation.
::::
Our

::::::::
retrievals

::::::
using

::::
this

:::::
Q0.90

:::
→

::::::
Q1.00

::::::::
averaged421

::::::
dataset

::::::::::
(shortened

:::
to

::::::
Q0.90)

::
is
::::::::
referred

::
to

:::
as AIRS_RT

::
in

:::::
what

:::::::
follows.

:
422
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3.2 Observed trends from the Q0.90 Quantiles423

Having selected the Q0.90 observations, for each tile the average radiance per 16424

day interval is computed. With two sixteen day periods not available (Aqua platform425

or AIRS shutdowns during e.g. solar flare events) this gives a total of 457 time steps over426

20 years. Anomalies are formed from this time series, and then de-seasonalized to give427

the spectral radiance trends and error estimates Strow and DeSouza-Machado (2020) us-428

ing Matlab robustfit :429

r16 days
observations(t) ∼ rfit(t) = ro + a1t+

4∑
i=1

cisin(n2πt+ ϕi) (2)

with a1 and its associated uncertainty, both converted to brightness temperature (BT),430

being the trends in K /yr
::::
yr−1. Using sub-harmonics in the fit did not produce any no-431

ticeable change in the AIRS_RT retrievals (described below).432

The left panel of Figure 3 shows the descending orbit (nightime) 20 year (Septem-433

ber 2002- August 2022) global averaged spectral observations for the five quantiles men-434

tioned above. We note the spectra in most of the plots in this section are weighted by435

the cosine(latitude) of the tiles, unless otherwise stated. In addition we only show the436

640-1640 cm−1 region, and ignore the shortwave 2050-2750 cm−1 region since the AIRS437

SW channels are drifting relative to the LW Strow and DeSouza-Machado (2020). Spec-438

tral averages constructed from Figure 1 would have this same behavior, namely that in439

the window region the mean spectrum of
:::
data

::::::::::
populating

:
the warmer quantiles integrated440

out to Q1.00 (Q0.80, Q0.90, Q0.95, Q0.97)
::
as

:::::::
defined

::
in

:::::::::
Equation

:
1
:
are on the order of441

a Kelvin apart, and have about half/quarter that difference in the optically thicker re-442

gions dominated by H2O::::
and/

:
or

:
CO2 absorption respectively.443

The right hand panel of Figure 3 shows (top) the trends and (bottom) the 2σ trend444

uncertainties for these quantiles, in Kelvin/year
:
K

:::::
yr−1. We emphasize that the top right445

panel shows that the spectral trends for the quantiles lie almost on top of each other;446

the difference between the Q0.50 and other trends is at most about +0.003 K /yr
::::
yr−1

447

(out of a 0.02 K /yr
::::
yr−1 signal) in the window region (and about +0.0045 K /yr

::::
yr−1

448

in the troposphere temperature sounding channels), or less than 10%. Similarly the largest449

trend uncertainty in the bottom panel is for Q0.50. This implies that clouds effects in450

the infrared do produce the largest variability (blue curve) but on average for the infrared451

are not changing much, so the +0.022 K /year
::::
yr−1

:
window region trends are dominated452

by surface temperatures changes and to a lesser extent by water vapor changes.453

The
::::
TOA

:::::::::
radiances

::
in
::::
the

:
15 um (700-800 cm−1) region is dominated by the

:::
are454

::::::::
impacted

:::
by

::::
two

::::::
effects

:::
(a)

:::
the

:::::::::
increased

:::::::
optical

::::::
depths

::::
due

::
to

::::::::::
increasing

:::::::::::
atmospheric455

CO2 increases; the effects of increasing are to make the atmosphere emit at
::::
leads

:::
to

:::::::::::
atmospheric456

:::::::
emission

:::::
from

:
higher altitudes/lower temperatures, leading to an almost

::::::::
resulting

::
in

::::::
almost457

:
a
:
-0.06 K/year signal for the troposphere; hidden in there are the ,

::::
and

::::
(b)

:::
the

:::::::::::
atmospheric458

temperature increases (again about +0.02 K /year); also
::::::
yr−1).

::::
Also

:
of interest is the459

trends in the stratosphere (650-700 cm−1) changes which consists of a stratospheric cool-460

ing signal (negative) and emission higher up due to increased CO2; combining to give461

a net zero effect over 20 years, also seen in Raghuraman et al. (2023). The H2O signal462

is evident in the 1400-1625 cm−1 region, and is negative; in other words, increasing tem-463

peratures have led to increased atmospheric amounts of H2O, and the water vapor feed-464

back has reduced the amount of outgoing flux in that region. By extension, this also hap-465

pens in the Far Infrared regions affected by water vapor; current sounders do not make466

direct measurement in the10-600 cm−1 region so at present this can only be inferred; how-467

ever in the near future it is anticipated the Far Infrared Outgoing Radiation Understand-468

ing and Monitoring (FORUM) mission Palchetti et al. (2020) will provide data to fill in469

this important gap
::
in

:::
the

::::::
future.470
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Figure 3. 20 year trends from different observation quantiles. The left hand panel shows
the mean globally averaged BT trends

::::::::::
observations from 20 years of AIRS data, for quantiles

50
:::::
Q0.50,80

:::
0.80,90

:::
0.90,95

::::
0.95,97

:::
0.97 as described in the text.The right hand panel shows (top)

the
:::::::
globally

:::::::
averaged

:
trends from

::
for

:
those years

:::::::
different

::::::::
quantiles and (bottom) the spectral

uncertainty in the trends. The nightime (descending) trends are shown in these plots.

471

3.3 Observed trend changes over 20 years472

The left panel of Figure ?? shows the mean descending (nightime) orbit Q0.90 brightness473

temperature spectrum, for four time periods, all commencing on September 1, 2002 - the474

periods are for 5,10,15,20years of data and end on August 31, 2007, 2012, 2017, 2022respectively.475

As expected the mean cosine averaged observed BT is slightly over 284 K through most476

of the longwave window region. The right hand panel of the same Figure ?? shows the477

trends for the four time periods in the top, while the bottom shows the uncertainties.478

Averaging over the inter-annual variability affects the trends, with the shortest/longest479

time periods (5/20 years) having the largest/smallest spectral uncertainty as one would480

expect as inter-annual variability slowly becomes less important in the trends.481

Changes in AIRS observations over time spans of 05,10,15,20 years all beginning482

on September 1, 2002. The left hand panel shows the mean globally averaged 90th quantile483

BT spectra for those time periods. The right hand panel shows (top) the trends from484

those years and (bottom) the spectral uncertainty in the trends.The nightime (descending)485

trends are shown in these plots.486

4 Spectral closure : comparisons between observed and simulated spec-487

tral trends488

Previous work Strow and DeSouza-Machado (2020) has demonstrated that the ra-489

diances from AIRS are climate quality, if one restricts the channel set to the ∼ 450 chan-490

nel set that is largely immune to nonphysical drifts Strow et al. (2021). In this section491

we describe a way to test the quality of the monthly thermodynamic output from reanal-492

ysis and/or L3 products which are all in geophysical space, against the AIRS L1C ob-493

servational data which is in radiance space. This is accomplished by geolocating the monthly494

(ERA5) surface temperature, air temperature, water vapor and ozone fields to tile cen-495

ters as described in Section 2.2, which are then input and run through the SARTA fast496

model Strow, Hannon, DeSouza-Machado, et al. (2003), for the entire 20 years. Spec-497

tral radiance trends were then computed from these time series of (clear sky) spectral498

radiances. The conversion of L3 retrieval and NWP reanalysis trends to a radiance time499
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Figure 4. 20 year zonally averaged spectral brightness temperature trends (in K /year
::::
yr−1)

for (left) AIRS Q0.90 observations and (right) clear sky simulations using ERA5 monthly model
fields. The center panel shows the AIRS Q0.90 spectral uncertainties. The ERA5 simulations in-
cluded linear trends of CO2, CH4 and N2O, while the O3 trends in ERA5 are from the reanalysis
itself.

series, provides a rigorous check of their accuracy against the observed AIRS L1C ra-500

diance trends which are validated to be highly accurate.501

A good reviewer might ask about the noise introduced by secant angle varying in the 16 day period. Check what the std dev is for the secant angle and then convert to BT502

503

The simulations included realistic column linearly-increasing-with time mixing ra-504

tios for CO2, CH4 and N2O for the ERA5 spectra, as well as land or ocean surface emis-505

sivity co-located to tile centers together with view angles of about 22◦. From these the506

ERA5 spectral trends were derived similarly to what was described above for the AIRS507

observation spectral trends.508

509

Figure 4 shows the descending (night) zonally averaged results in K /year
:::
yr−1, al-510

lowing us to compare the Q0.90 nominally clear AIRS observed spectral trends, to those511

simulated using monthly ERA5 fields (without clouds). The center panel shows the spec-512

tral trend uncertainties from the observations, also in K /year
::::
yr−1. In the next section513

we derive geophysical trends from these (AIRS observed) spectral trends, and the sim-514

ilarities/ differences in geophysical trends can be partially understood from the similar-515

ities/differences in the spectral trends. For example, the H2O sounding region (1350-1600516

cm−1) shows roughly similar (positive) trends in the tropics and mid-latitudes; there are517

some slight differences in the high altitude channels (1450-1550 cm−1 region). The fol-518

lowing sections shows that there are subtle differences in these trends, which manifest519

as differences in tropospheric water vapor trends. Observations and simulations both have520

positive dBT/dt in the 800-960,1150-1250 cm−1 region, indicating surface warming; how-521

ever the ERA5 simulation show more warming in the southern polar regions than do the522

AIRS observations. In particular note the mean warming in the tropics is less than that523

in the mid-latitudes, and the polar regions show the largest overall change in brightness524

temperature in the window region. Large differences are seen in the 10 um (1000 cm−1)525

O3 sounding region, which are not surprising since ozone assimilation is not a primary526

goal of ECMWF assimilation; here we do not address these as we focus on the changes527

to the moist thermodynamic state. The window region trends computed using the ERA5528

model are more positive in the Southern Polar region. Conversely the 640-700 cm−1 spec-529

tral region is positive, especially in the tropics; however the observations show a net cool-530

ing trend away from the tropics, compared to the ERA simulations. This demonstrates531

the importance of the model → spectral trend comparisons, given the accuracy of the532

AIRS observations.533
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The paper by (Raghuraman et al., 2023) shows similar figures, but in terms of spec-534

tral OLR trends encompassing the 0-2000 cm−1 range, while (Huang et al., 2023) shows535

similar plots for a slightly smaller time period (2002-2020) and using nadir L1B radiance536

dataset which has no or minimal frequency corrections compared to the L1C set we use537

in this paper. (Huang et al., 2023; Raghuraman et al., 2023) and our work all show, ei-538

ther in radiance or OLR space, (a) the increased observed radiance in the window chan-539

nels, due to surface temperature increases (b) the ≃ -0.06 K /yr
::::
yr−1

:
decrease in BT in540

the 700-750 cm−1 troposphere sounding region, which is due to the CO2 amounts increas-541

ing; we also see differences in the signs of the BT changes in the 650-700 cm−1 strato-542

spheric CO2 and temperature channels for some latitudes between AIRS_RT observa-543

tions and ERA5 simulations (c) increases in the 1350-1640 cm−1 water vapor sounding544

region seen in Figures 3 and 5, and (d) the 1280-1340 cm−1 decreases are due to CH4545

increases.546

4.1 Sample spectral closure comparisons using other monthly products547

Here we follow the earlier work of Huang et al. (2023) and convert the ERA5 monthly548

model fields to spectral radiances, after which we compute spectral trends for compar-549

ison to AIRS observations. Spectral closure calculations for the entire 20 year timeseries550

were also generated for the monthly MERRA2 model fields, as well as the monthly AIRS551

v7 L3 and CLIMCAPS L3 retrieved data products. Again only the monthly thermody-552

namics and surface temperature fields for all 72 × 64 tiles were used in these SARTA runs,553

with GHG changes added in for each timestep as described above. Spectral trends were554

then computed using Equation 2.555

We chose just one limited example here to illustrate the power of this approach for556

diagnosing which dataset is more accurate, given that the AIRS spectral trend accuracy557

is already established. Water vapor is highly variable in space and time, meaning wa-558

ter vapor retrievals using hyperspectral sounders radiances differ most from NWP fore-559

casts, in particular because of the typical ± 90 minute difference between observation560

and forecast, and is where these sounders typically provide the most information. Fig-561

ure 5 show the globally averaged brightness temperature trends (in K /year
::::
yr−1) in the562

1350 - 1650 cm−1 water vapor sounding region. The blue curve shows the trends from563

the AIRS observations used in this paper, while spectral trends constructed from the AIRS564

L3/ CLIMCAPS L3 retrievals are in red/yellow and the ERA5 model fields are in pur-565

ple. The AIRS observations and ERA5 constructed spectral trends are positive in this566

region, while the AIRS L3 and CLIMCAPS L3 trends are obviously different, being neg-567

ative in this water vapor sounding region. The subtle differences in these spectral trends568

arise from differences in the geophysical trends between observations and the models them-569

selves, and will be addressed in the following sections, where the retrieved and model sur-570

face temperature, and atmospheric temperature and water vapor geophysical trends will571

be compared and discussed.572

573

5 Testing the variability of representative points from NWP models
:::::::::::
reanalysis574

Each sixteen day 3◦× 5◦tile contains ∼ 12000 observations, which means for each575

tile about 600 daytime and 600 nightime observations are averaged to produce the Q0.90576

dataset per timestep. Conversely there are typically only ∼ 240 monthly ERA5 0.25◦points577

per 3◦× 5◦tile; for 1◦resolution AIRS L3 and CLIMCAPS L3 there are even fewer (15)578

points per tile. This low number of points means we chose a simple solution of using the579

grid cell closest to the center of each 3◦× 5◦tile for building the NWP and L3 geophys-580

ical time series. This choice is validated below using the following test to see for exam-581
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Figure 5. Globally averaged spectral trends in the water vapor sounding region : AIRS L1C
observations (blue) compared to spectral closure from the standard monthly AIRS L3 retrievals
(red) and CLIMCAPS L3 (yellow) and from monthly ERA5 simulations (yellow). The recon-
structed AIRS_RT trends very closely match the AIRS L1C observations and are not shown
here.

ple how surface temperature trends would be impacted as we changed the representa-582

tive point for the ERA5 model fields.583

For the descending overpass we built complete sets of approximately 240 ERA5 points584

per tile per month; at 0.25◦resolution one of these is almost certainly at the tile center.585

From these monthly sets, we could either directly read the tile center temperature (our586

default), or compute the average surface temperature per tile, or compute the average587

of the hottest 10% surface temperatures per tile. This was done for all 20 years (240 monthly588

timesteps) after which the three timeseries were trended. Over ocean the differences be-589

tween all three datasets as
:::
was

:
typically -0.001 ± 0.005 K /year

::::
yr−1, while over land the590

differences were larger at about 0.001 ± 0.01 K /year
::::
yr−1. This is to be compared to591

mean trends of about 0.014 ± 0.02 K /yr
::::
yr−1

:
over ocean and 0.025 ± 0.04 K /yrover592

land. In other words
::::
yr−1

::::
over

::::
land

::
:
:
the spread of the ocean and land ERA5 surface593

temperature trends for the three methods, was about four times larger than the spread594

of the differences between the three methods. In what follows
:
is

:::::
much

:::::::
smaller

:::::
than

:::
the595

:::::
mean

::::::
trends.

::::::
Given

:::::
that

:::::
there

::::
were

:::
far

::::::
fewer

::::::::::
re-analysis

::::::
points

::
in

::
a

::::
grid

::::
box

::::
than

:::::
tiled596

:::::
Q0.90

::::::::::::
observations,

:::::::
coupled

:::::
with

:::
the

::::
fact

:::::
that

::::::::
choosing

:::
the

:::::
10%

::::::::
warmest

::::::
profiles

::::::
would597

::::::
provide

:::
an

:::::
even

:::::::
smaller

:::::::
sample,

:::
we

:::::
chose

:::
to

:::
use

:
the tile center was thus chosen as

:
to

:::
be598

the representative point to co-locate the model fields, when comparing against the tiled599

observations.600

6 Geophysical Trend Retrieval outline601

6.1 Setting up the Retrieval Problem602

The observed spectral brightness temperature for a tile at any time t can be mod-603

eled as604

BT (ν, t) = f(X(t), ϵ(ν, t), θ(t)) + NeDT(ν) (3)

where the state vector X(t) has the following five geophysical state parameters : (1) sur-605

face temperature (ST), (2) atmospheric temperature profile T(z), (3) water vapor pro-606
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file WV(z), (4) ozone profile O3(z) (5) greenhouse gas forcings (GHG) due to CO2, CH4607

and N2O changing as a function of time t and f(X(t), ϵ, θ, ν) is the clear sky radiative608

transfer equation for channel center frequency ν. The spectral noise NeDT(ν) for a typ-609

ical tropical “clear scene” is about 0.1 K in window region, increasing to about 1 K in610

the 15 µm temperature sounding channels and about 0.2 K in the 6.7 µm water vapor611

sounding region, but the noise will vary as a function of scene temperature. We parameterize612

::::::::::
parametrize

:
the GHGs using single numbers (such as ppm(t) for the CO2 column), and613

include the AIRS orbit and viewing angle geometry θ and the surface emissivity ϵ(ν),614

while we omit forward model and spectroscopy errors. We ignore cloud scattering as well615

as the spatial variation of the state parameters, emissivity and scan angle geometry within616

a tile. Linearizing the above equation about the time averaged profile, the relationship617

between the observed spectral trends and desired thermodynamic trends is given by618

dBT (ν)

dt
=

∂f

∂X

d

dt
X(t) = K(ν)

d

dt
X(t) +

���������:0

Kemissivity(ν)
d

dt
ϵ(t) → K(ν)

d

dt
X(t) (4)

where the matrix K(ν) is the thermodynamic jacobian (surface temperature, air619

temperature and trace gases) and we ignore any orbit drifts (changes to θ), instrument620

changes (changes to NeDT (ν)) and surface emissivity (ϵ(ν)); the last assumption is in-621

vestigated in a later section. The overbars on parameters X denotes this is a time av-622

erage (linear trend) that we are working with, and we have converted from radiances in623

Equation 2 to brightness temperatures in Equations 3 and 4.624

6.2 Jacobian calculations625

For a typical clear sky tropical sky atmosphere, the 800 - 1200 cm−1 window re-626

gion has surface temperature (SKT) jacobians which are about +0.5 to +0.75 K per de-627

gree SKT change and -0.75 to -0.25 K per 10% change in column water vapor. The spec-628

tral variability in these window region jacobians is primarily due to reducing water con-629

tinuum absorption as you move from the 800 cm−1 end to the 1200 cm−1; consequently630

the surface temperature jacobians becomes closer to unity and the column water jaco-631

bians become closer to zero as water vapor amount decreases (drier atmospheres in the632

mid-latitudes and polar regions). The hyperspectral channels used in this work help sep-633

arate out these two competing changes, which we validate against other datasets in this634

study. As seen in Figure 4 typical magnitudes of the spectral trends on the left hand side635

of Equation 4 are less than about 0.1 K per year. Equation 4 is in the usual inversion636

form δy = Kδx, and the Optimal Estimation (Rodgers, 2000) solution used to solve637

the anomaly time series in Strow et al. (2021) is also used here. The noise term used for638

the trend retrieval NeDT (ν) is not the instrument noise since each 16 day point in our639

time series is averaged over hundreds of observations as earlier described; instead the un-640

certainty is that due to inter-annual variability in the linear trends obtained from the641

trend fitting in Equation 2. Examples of typical noise values are shown in the bottom642

right hand panels
:::::
panel of Figures 3and ??.

:
.
:

643

ERA5 monthly model fields at tile centers, together with time varying concentra-644

tions of GHG such as CO2, were averaged over 20 years so jacobians could be computed.645

The GHG concentrations were a latitude dependent increase of about ∼ 2.2 ppmv/year646

::::
ppm

:::::
yr−1 for CO2 derived from the CarbonTracker Peters et al. (2007) (CarbonTracker647

CT-NRT.v2023-4, http://carbontracker.noaa.gov) model data at 500 mb. Our pseudo-648

monochromatic line by line code kCARTA De Souza-Machado et al. (2018, 2020) was used649

with these averaged profiles to produce accurate analytic jacobians. The HITRAN 2020650

line parameter database Gordon and Rothman (2022), together with MT-CKD 3.2 and651

CO2,CH4 line mixing from the LBLRTM suite of models Clough et al. (2005) were used652

in the kCARTA optical depth database De Souza-Machado et al. (2018). A 12 month ge-653

ographical land-varying spectral emissivity database spanning one year from Zhou et al.654

(2011) was used, while ocean emissivity came from Masuda et al. (1988). The atmospheric655
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temperature, water vapor and ozone profile jacobians, and the surface temperature and656

column jacobians for the GHG gases such as CO2 and CH4 and N2O, were then convolved657

using the best estimate AIRS Spectral Response Functions Strow, Hannon, Weiler, et658

al. (2003).659

Tests done for this paper, together with the results in Strow et al. (2021), estab-660

lished that jacobians derived from MERRA2 versus ERA5 produced no significant dif-661

ferences in the context of retrieved trends or anomalies done for this paper, as the un-662

certainty in linear trends due to inter-annual variability dominates over any uncertainty663

(or differences between) model fields.664

6.3 Optimal Estimation Retrieval : State vector, covariance matrices665

and a-priori666

Using monthly ERA5 model fields averaged over 20 years, for each of the 64 × 72667

tiles we computed analytic jacobians for the following (vector) atmospheric thermody-668

namic variables [fractional water vapor, fractional ozone and temperature] together with669

(scalar) surface temperature, where we retrieved fractional gas concentration trends dfracX/dt =670

1/Xavg(z)dXavg(z)/dt to keep all values in the state vector at about the same magni-671

tude. A single iteration Optimal Estimation retrieval Rodgers (2000) is used to simul-672

taneously solve for the geophysical parameter trends. As in (Strow & DeSouza-Machado,673

2020) the geophysical covariance uncertainty matrices are a combination of Tikonov and674

covariance regularization. The uncertainties for the covariance matrices were typically675

[0.1,0.25,0.45] K /yr
::::
yr−1 for the surface/tropospheric/stratospheric temperature trends,676

and [0.04/0.02] /year
::::
yr−1

:
for the fractional tropospheric/stratospheric water vapor trends.677

Tikonov L1 regularization (Rodgers, 2000) also included, with the scalar factor multi-678

plying this regularization corresponding to about 1/10 the covariance uncertainties. The679

spectral uncertainties used in the retrievals come from the above mentioned trend un-680

certainties. For completeness we note that a sequential retrieval (see for example Smith681

and Barnet (2020)) produces very similar geophysical trends.682

Here we emphasize four points about our geophysical trend retrievals, which sets683

us apart from trends derived from other datasets. Firstly the a-priori
::::
trend

:
state vec-684

tor is zero
::::::::
(dST/dt

::
=

:::::::::
dT(z)/dt

::
=

::::::::
dQ(z)/dt

:::
=

::
0)

:
for all geophysical parameters, except685

for water vapor where we enforced constant (or slightly increasing) relative humidity as686

described below. This ensures traceability of our retrieval is straightforward especially687

wherever the AIRS instrument has sensitivity. For example the 300 - 800 mb water va-688

por trend retrievals will be based on the data only, thereby insulating us from any pos-689

sible a-priori information from e.g. climatology or NWP models, unlike the operational690

AIRS V7 or CLIMCAPS retrievals which use first guesses based on neural net and MERRA2691

respectively.692

Secondly as seen in Figures 4 and 5, in the 15 µm region there is a large spectral693

overlap signal (-0.06 K /yr
::::
yr−1) from the increasing CO2, which is much larger than the694

expected atmospheric temperature trend (0.01 K /yr). The 20 year dataset contains inter-annual695

variability whose noisy time series and correlations with for example temperature changes,696

which
:::::
yr−1).

::::::
These

:::::::::::
correlations

:
makes it difficult to also retrieve these well mixed GHG.697

Instead of attempting to solve for both GHG concentration changes and for temperature698

changes , we spectrally removed
:::::
jointly

:::::::
retrieve

:::::
both

::::::::::::
temperatures

::::::::
changes

::::
and

:::::::
changes699

::
in

::::
well

::::::
mixed

::::::
GHGs

::::
such

:::
as CO2:.::::

We
:::::
chose

::
to

:::::
focus

:::
on

:::::::::
retrieving

::::::::::::
temperature

:::::::
changes700

::::
only,

:::
by

:::::::::
spectrally

:::::::::
removing the effects of changing cdCO2 , CH4 and N2O GHG con-701

centrations, .
:::::
This

::::
was

:::::
done by using the GHG trends estimated from NOAA ESRL Car-702

bonTracker data multiplied by the appropriate GHG gas column jacobian (CO2,N2O and703

CH4 and CFC11,CFC12) computed as described above using the averaged over 20 years704

ERA5 monthly profile for each tile.705
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Thirdly instead of using all 100 layers described in the AIRS forward model Strow,706

Hannon, DeSouza-Machado, et al. (2003), we combine pairs of layers for a 50 atmospheric707

layer retrieval, as the AIRS radiances contain far fewer than 100 pieces of information708

(see e.g. Maddy and Barnet (2008); De Souza-Machado et al. (2018)).709

Fourthly, modern hyperspectral infrared sounders have highest sensitivity to tem-710

perature and water vapor in the mid-tropopause; see for example the averaging kernels711

in Irion et al. (2018). Using a zero fractional WV trends a-priori at all levels, it was fairly712

straightforward to obtain fractional WV(z) trends close to those from the NWP model713

datasets in the 3000-850
:::::::
300-850 mb region. In order to improve our results in the low-714

est layers, we enforced a constant relative humidity approximation, which is a well-known,715

expected behavior under global climate change Soden and Held (2006); Sherwood et al.716

(2010). This was done by using the ignoring the contribution due to water vapor changes717

in the observed BT1231 trend, and using it as an approximation for air temperature trend718

over ocean; this allows us to compute an estimate of how the water vapor would need719

to change720

RH(T ) =
e

esat(T )
=⇒ δ(RH) =

1

esat(T )
δe− e

e2sat(T )
δesat(T ) =

1

esat(T )
δe− e

esat(T )

Lv

Rv

1

T 2
δT

(5)
where e, esat(T ) are the vapor pressures and we used esat(T ) = es0e

Lv
Rv

( 1
To

− 1
T ) (where721

Lv, Rv are latent heat of vaporization and gas constant respectively) to go from the ex-722

pression in the center to the expression on the right. If we expect the change in RH to723

be zero then δe
e = Lv

Rv

δT
T 2 , where we can use δT/δt ∼ d/dtBT1231. to approximate the724

a-priori fractional vapor pressure rates (or a-priori fractional water vapor rates) between725

surface and 850 mb, smoothly tailing to 0 in the upper atmosphere. Subsection 7.2 has726

a similar discussion on a proposed method to alleviate the lack of sensitivity to upper727

atmosphere water vapor. Our default results in this paper are from using the MLS a-728

priori, unless otherwise stated.729

6.4 Testing on Synthetic Spectra
::::::::::
synthetic

::::::
trend

::::::::
spectra

::::::
made

:::::
from

:::::::
ERA5730

:::::::::::
Reanalysis

:::::::::
monthly

::::::
fields731

We tested the retrieval code by using it on the simulated nighttime only ERA5 spec-732

tral trends, and compared to geophysical trends computed directly from the ERA5 re-733

analysis model. Spot checks of the spatial correlations of ERA5 fractional water vapor734

and temperature trends versus the trends retrieved from synthetic spectra/our retrieval735

algorithm, peaked at 500 mb with correlations of about 0.9, compared to 800 mb cor-736

relations of 0.80 and 0.55 for temperature and fractional water vapor trends respectively737

and 200 mb correlations of 0.89 and 0.69 for dT/dt, dWVfrac/dt. This is to be expected738

since a computation of the water vapor averaging kernels for infrared instruments for ar-739

bitrary atmospheric profiles typically shows they peak in the 300 mb - 850 mb range and740

decrease rapidly away from those regions; conversely the temperature averaging kernels741

stay relatively uniform through the free troposphere and above, though they also decrease742

close to the surface; see for example Irion et al. (2018); Smith and Barnet (2020); Wu743

et al. (2023).744

Figure 6 shows a sample set of results using nightime ERA5 model output converted745

to spectral trends as described above. The top panels (A) are always the atmospheric746

trends derived direct
::::::::
computed

::::::::
directly from the monthly ERA5 model fields, while the747

bottom panels (B) are the atmospheric trends derived
::::::::
retrieved from the converted ERA5748

spectral brightness temperature trends. The left most panel is the atmospheric temper-749

ature trend comparison (both in K /yr
::::
yr−1) while the rightmost panel is the fractional750

atmospheric water vapor trend comparison (in /yr
::::
yr−1).751

752
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Figure 6. Comparing geophysical trends derived directly from ERA5 monthly nighttime fields
(top) vs from the OEM retrieval applied to the spectral trends (bottom). Left panel is dT/dt (in
K /year

::::
yr−1) while rightmost panel is d(fracWV)/dt (colorbar in /yr

::

−1).

It is evident from the figure that the tropospheric trends in the tropical and mid-753

latitude regions are quite similar, and there are differences in the polar regions and strato-754

spheric regions where the AIRS instrument has reduced sensitivity. The atmospheric and755

surface trends are shown in Table 1, divided into “all” (which is the entire ± 90 latitude756

range and 0-1000 mb vertical range) and “T/M” which is the tropical/midlatitude region,757

which is further reduced to 050-900 mb for air temperature and 300-800 mb for water758

vapor.
::::::
“ERA5

:::::::
direct”

:::
are

::::::
trends

::::::::::
computed

:::::::
directly

:::::
from

:::
the

:::::::::::
geophysical

:::::
fields,

:::::
while

:::::::
“ERA5759

::::::::
spectral”

:::
are

::::::::
retrieved

:::::
from

::::
the

:::::::
spectral

:::::::
trends.

:
760

dTz/dt dTz/dt dSKT/dt dSKT/dt dfracWV/dt dfracWV/dt
K /yr

::::
yr−1

:
K /yr

::::
yr−1

:
K /yr

::::
yr−1

:
K /yr

::::
yr−1

:
K /yr

::::
yr−1

:
K /yr

::::
yr−1

:

A T/M A T/M A T/M
GND-TOA

::::::::
SFC-TOA

:
050-900 mb GND-TOA 300-800 mb

ERA5
:::::
direct

:
0.010 ± 0.038 0.029 ± 0.013 0.020 ± 0.035 0.018 ± 0.032 0.003 ± 0.002 0.002 ± 0.001

::::::
ERA5

:::::::
spectral

:
0.004 ± 0.033 0.027 ± 0.012 0.019 ± 0.033 0.016 ± 0.029 0.001 ± 0.001 0.002 ± 0.001

Table 1. Cosine weighted air temperature, skin temperature, fractional water vapor trends,
together with uncertainties/.

::::
The

::::::
“ERA5

::::::
direct”

::::
are

::::::
directly

:::::
from

:::
the

:::::
ERA5

::::::::::
geophysical

::::::
trends,

::::
while

::::::
“ERA5

::::::::
spectral”

:::
are

::::::
trends

::::::::
retrieved

::::
from

:::
the

:::::::::
converted

:::::
ERA5

:::::::
spectral

::::::
trends.

6.5 Surface emissivity changes761

Equation 3 explicitly includes the surface emissivity in the equation of radiative762

transfer; however Equation 4 assumes this is unchanging. Here we rewrite Equation 4763

as764

dBT (ν)

dt
−Kemissivity(ν)

d

dt
ϵ(t) → dBT ′(ν)

dt
= K(ν)

d

dt
X(t) (6)

First we consider ocean emissivity changes
:::::
Ocean

::::::::::
emissivity

:::
has

::
a
:::::::::::
dependence

:::
on765

:::::::::
windspeed

:::::::::::::::::::
Masuda et al. (1988). Lin and Oey (2020) and other literature suggest wind766

speed increases of +2.5 cm /s/year
:::
s−1

:::::
yr−1

::::
have

::::::::
occured

:
between 1993-2015 in the trop-767

ical Pacific, and smaller (or close to zero) values elsewhere. The monthly ERA5 u10,v10768
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10 m speeds for the 20 year time period in this paper also showed the maximum abso-769

lute trend was 0.09 m/s/year (over the Southern Ocean) while the global ocean mean770

and standard deviation were 0.006 ± 0.022 m /s/year
:::
s−1

:::::
yr−1; The emissivity changes771

over ocean using a 0.025 m /s
:::
s−1

:
wind speed change are on average on the order of 1×772

10−6 per year in the thermal infrared window (or about 0.0003 K /yr
::::
yr−1

:
change in the773

window region); assuming the optical properties of water do not substantially change with774

the ∼ 0.02 K increases seen in all the datasets considered in this paper, these very small775

emissivity changes are of no consequence.776

Land emissivity changes were estimated as follows. A global monthly mean emis-777

sivity database, the Combined ASTER and MODIS Emissivity over Land (CAMEL v003)778

has recently been released Borbas et al. (2018). We matched the tile centers to the database779

for the 20 × 12 months spanning our 2002/09 - 2022/08 time period, and computed the780

emissivity trends over land; the results (not shown here) were on the order of −1×10−4
781

and +3×10−4 in the 800-960 cm−1 and 1100-1250 cm−1 regions respectively, averaged782

over the land observations. For each tile the Kemissivity(ν)
d
dtϵ(t) term was estimated by783

running SARTA with the default emissivity, then differencing with the SARTA output784

obtained when the emissivity trends were added on. Averaged over the planet, the spec-785

tral changes arising from these emissivity changes were much smaller than the spectral786

trends seen in Figure 3, about -0.001 K /year
:::
yr−1

:
between 800-960 cm−1 and about +0.002787

K /year
::::
yr−1 on the 1100-1250 cm−1 region (which we do not use in our retrieval, since788

many of the channels are synthetic and the real channels are drifting (Strow et al., 2021)).789

The land only results were roughly about three times these magnitudes. Using these emis-790

sivity jacobians on the left hand side of Equation 6 and running the retrieval on the ad-791

justed spectral trends over land, resulted in about at most 0.01 K increases to the zon-792

ally averaged surface temperature changes over land; zonally averaged these largest dif-793

ferences were at about 40◦N to 60◦N and -25◦S to +15◦N, due to emissivity decreases;794

the 20◦N to +35◦N region which included the Sahara and swathes of Asia, had emissiv-795

ity increases but the averaged-over-land temperature decreases were small, as there were796

offsetting emissivity increases in other land areas at the same latitudes. We did not pur-797

sue the impact of these emissivity changes further as the CAMEL database is affected798

by the stability of the MODIS data, and our results below will not include accounting799

for changes in land emissivity.800

7 Results801

The trends retrieved in the previous section using simulated radiance trends show802

that the retrieval package is working as expected. Here we apply our retrieval to observed803

AIRS L1C radiance trends and discuss the retrieved AIRS_RT geophysical trends to those804

computed directly from the ERA5/MERRA2 model fields and AIRS L3/CLIMCAPS L3805

products. We will have an expectation that since the simulated radiance trends had no806

noise added to them, the uncertainty in the spectral rates was lower than the actual ob-807

served spectral uncertainty; this will lead to larger uncertainties and/or errors in our re-808

trieval using observed radiance trends.809

We will make most comparisons against NWP models and L3 products in the con-810

text of averages over the descending/night (N) and ascending/day (D) data since the MERRA2811

(and GISS) datasets are only available as a D/N average; the reader is referred to the812

Appendix where we show a few of the D-N differences. The results are shown in the or-813

der of surface/column trends (surface temperature and column water), followed by zonal814

averages of the atmospheric temperature and fractional water vapor trends.815

7.1 Skin Temperature trends816

There are typically multiple (window) channels that are sensitive to a surface pres-817

sure, meaning the radiances typically have more information content for the surface tem-818
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Figure 7. Surface temperature trends dSKT/dt averaged over day and night for AIRS_RT,
and from separately fitting the monthly data in ERA5, MERRA2, AIRS L3, CLIMCAPS L3 and
GISS.

perature (assuming the surface emissivity is well known and there are no clouds) rather819

than for example air temperature. Figure 7 shows the diurnally averaged day/night (D/N)820

surface temperature trends from 6 datasets : AIRS_RT, AIRS L3, CLIMCAPS L3, ERA5,821

MERRA2 and NASA GISTEMP. AIRS_RT shows an overall global warming of +0.021822

K /year
::::
yr−1; the cooling trends include the tropical eastern Pacific and south of Green-823

land and tropical northern Atlantic. The rest of the datasets also show similar patterns824

of cooling in the N. Atlantic Ocean, warming over the Arctic and some degree of cool-825

ing over the Antarctic Ice Shelf/Southern Ocean as does AIRS_RT. The AIRS v7 L3826

shows some cooling over Central Africa and the Amazon not seen in the AIRS_RT trends,827

where one could expect Deep Convective Clouds and possible cloud clearing issues. We828

also point out the AIRS L3 product has many missing values off the western coasts of829

N. and S. America, due to cloud clearing issues. MERRA2 shows more cooling over C.830

Africa, and just like the AIRS v7 data, a lot of cooling near the Antarctic Ice Shelf. Of831

note here is that although CLIMCAPS uses MERRA2 as its first guess, their surface tem-832

perature trends are not similar, especially around the Antarctic where MERRA2 shows833

strong cooling trends.Over the ocean GISS shows similar trends to what AIRS_RT trends834

show. An earlier study of Land Surface Temperatures between 2003-2017 using MODIS835

Prakash and Norouzi (2020) shows very similar large daytime cooling trends over parts836

of central and western Indian subcontinent that we see from our retrieval as well as di-837

rectly from the BT1231 channel trends; for tiles that straddle both ocean and land the838

quantile method picks up the hottest observations, which especially during summer are839

mostly over the Indian subcontinent. For these reasons we also have confidence in our840

retrieved cooling trends over for example daytime continental Central/Eastern Africa,841

which are different from the other four day/night datasets.842

843
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The spatial correlations between AIRS_RT retrieved rates and the various datasets844

is shown in Table 2 while the cosine weighted skin temperature trends are shown in Ta-845

ble 3. By adding in the uncertainty in the trends for any of the individual models or datasets,846

and then doing the cosine weighting, we estimate uncertainties of about ± 0.015 K /yr
::::
yr−1

847

for “ALL”; the uncertainties for “OCEAN” are typically about 2/3 of that value, and for848

“LAND” are about 4/3 of that value. We emphasize here that we use all available NWP849

and L3 model data when computing their trends for any grid box, while the AIRS_RT850

uses only the hottest 10% of “clear” data; Strow and DeSouza-Machado (2020) showed851

that the tropical retrieved surface temperature trends and anomalies over ocean corre-852

lated very well with those from the ERA-I Sea Surface Temperature dataset.853

ERA5 MERRA2 AIRSL3 CLIMCAPSL3 GISS

0.72 0.59 0.80 0.89 0.77

Table 2. Correlations of average (nighttime,daytime) retrieved skin temperature trends from
AIRS_RT, versus trends from models/products

SKT trend K /yr
::::
yr−1

:
AIRS_RT AIRS CLIMCAPS ERA5 MERRA2 GISS

ALL 0.020 0.017 0.021 0.023 0.011 0.021
TROPICS 0.011 0.011 0.012 0.016 0.010 0.015
MIDLATS 0.029 0.020 0.028 0.026 0.020 0.026
POLAR 0.032 0.028 0.033 0.041 -0.005 0.028

OCEAN 0.019 0.011 0.019 0.017 0.012 0.017
LAND 0.022 0.030 0.024 0.038 0.010 0.030

Table 3. Cosine weighted skin temperature trends; uncertainties are on the order of ± 0.015 K
as explained in the text.

A notable outlier in this group is the MERRA2 trends, especially over land and854

the Southern Ocean which are noticeable negative (blue) compared to the other datasets;855

the agreement with tropical and mid-latitude oceans is much better. As noted earlier,856

the MERRA2 monthly trends come from a combination day/night dataset that was down-857

loaded, which as seen in Figure 7 consists of trends that are both positive and negative,858

combining to get a closer-to-zero global weighted trend. In addition MERRA2 is the only859

one of the six that (a) does not have the extreme +0.15 K /year
::::
yr−1

:
warming in the860

northern polar region and (b) shows a lot of cooling in the Central African area. Using861

ERA5 monthly data, we devised a test similar to the one mentioned in Section 5 to de-862

termine if the differences between MERRA2 and ERA5 surface temperature trends could863

be due to the temporal sampling (once for MERRA2 versus eight times for ERA5). For864

each month we matched the eight ERA5 timesteps available per month to the tile cen-865

ters and then averaged the surface temperatures per month; the ensuing geophysical time-866

series was then trended. The day/night ERA5 average of Figure 7 was compared to these867

trends; of note are (a) we did not see the cooling in Africa and near the Antarctic that868

is seen in MERRA2 and (b) the main differences between the 1.30 am/1.30 pm average869

in the bottom middle (ERA5) panel were over land (all 5 continents); the histograms of870

the differences showed the peak was typically close to 0 K /year
::::
yr−1, but the widths over871

land were about ± 0.02K /yr
::::
yr−1 or less (compared to ± 0.005 K /yr

::::
yr−1

:
over ocean).872
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Figure 8. Zonally averaged surface temperature trends
::
for

:
(left)

::::
sum

::
of ocean and land

:::::
point

:::
and

:
(right) ocean only.

Both AIRS L3 and MERRA2 show cooling in the Southern Ocean; we note that although873

MERRA2 is the a-priori for CLIMCAPS L3, their trends are different that those from874

MERRA2; in fact AIRS_RT shows the closest correlation to the observational CLIM-875

CAPS L3 trends. The AIRS L3 trends in the Southern Ocean region could arise because876

of problems identifying ice during the L2 retrieval (private communication : Evan Man-877

ning (JPL) and John Blaisdell (NASA GSFC)) though the MERRA2 trends also show878

significant cooling in that region, where few surface observations from buoys poleward879

of 60◦exist to help resolve these differences (see for example Figure 10 in Haiden et al.880

(2018)).881

Figure 8 shows the zonally averaged total (land+ocean) and ocean only surface tem-882

perature trends. Notice how the equator to midlatitude ocean trends are almost linear883

for all datasets, with the slope for the northern hemisphere being about double that of884

the southern hemisphere (roughly 0.001 K /year
::::
yr−1

:
per deg latitude).

:::::
Again

::::::::
focusing885

::
on

::::
the

::::
right

:::::
hand

:::::
plot,

:::
the

::::::
AIRS

:::
L3

::::::
trends

:::
are

::::::::
negative

:::
in

:::
the

:::::::::
Southern

::::::
Ocean

:::::::
regions,886

::::::::
compared

:::
to

:::
the

::::::
other

:
3
:::::::::
datasets,

:::
due

:::
to

:::
the

:::::::
cooling

::::::
trends

:::::::
around

:::
the

::::::::
Antartic

:::::::::
continent887

:::::
shown

:::::::
earlier,

::::
but

::::
then

::::::
agrees

:::::
with

:::::
most

::
of

:::
the

::::::
other

::::::::
datasets

::::
over

:::
the

:::::::::
Antartic;

:::
the

::::::::::
MERRA2888

:::::
trends

::::::::::::
significantly

:::::
differ

:::::::
between

::::
-90

::
S

:::
and

::::
-50

::
S.

:::::::::
MERRA2

::::
and

::::::
ERA5

::::
also

:::::
show

:::::::
slightly889

::::::
smaller

::::::::
warming

:::::::
trends

::
in

:::
the

:::::::::
Northern

::::::
Polar,

:::::::::
compared

::
to

::::
the

:::::
three

:::::::::::
AIRS-based

::::::::
datasets.890

891

892

We point out that the trends seen in Figure 7 vary noticeably at more local, regional893

levels and furthermore this spatial variation can differ between daytime and nighttime,894

evident in Figure A1 of Appendix Appendix A, and that the observational sets (AIRS_RT,895

CLIMCAPS L3 and AIRS L3) had larger differences than ERA5. Discussing the pos-896

sible causes of this is outside the scope of the paper.897

7.2
:::::::::
Addition

:::
of

:::::::::::
Microwave

::::::
Limb

:::::::::
Sounder

:::::::
Water

:::::::
Vapor

:::::::::
A-priori898

:::
The

::::::::::
Microwave

:::::
Limb

::::::::
Sounder

:::::::
(MLS),

:::
on

::::::
board

:::::::
NASA’s

:::::
Aura

:::::::::
platform,

::
is

::::::::
designed899

::
for

:::::::::
sounding

::
of

::::
the

::::::::::
atmosphere

::::::
above

::::
300

::::
mb.

:::
We

:::::::::
computed

::::::
water

:::::
vapor

:::::::
trends

::::
from900

:::
the

:::
L3

::::
data

:::::::::
produced

:::
for

::::
that

:::::::::::
instrument

::::::
(above

::::
300

::::
mb)

::::
and

::::
used

:::::
them

:::
as

:::
an a-priori

:::
for901

:::
the AIRS_RT

:::::::
retrieval.

:
902

903
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Figure 9.
::::::::::
dWVfrac/dt

:::::
(left)

:::::::
without

:::
and

::::::
(right)

:::::
with

::::
MLS

:
a-priori

::
in

:::
the

:::::
upper

::::::::::
atmosphere

:::::
Figure

::
9
::::::
shows

:::
the

:::::::::
retrieved

:::::::::
fractional

:::::
water

::::::
vapor

::::::
trends

:::::
when

:::
the

:
a-priori

:::::
trend904

::
in

:::
the

::::::
upper

:::::::::::
atmosphere

::
in

:::
the

::::
left

::::
and

:::::
right

::::::
panels

::::
were

:::::
zero,

::
or

:::::
used

:::::
MLS

:::::::
trends,

:::::::::::
respectively.905

::::
One

::::
sees

::::
that

:::
the

::::::::::
additional

:::::::::::
information

:::::::
brought

::
in
:::
by

::::
the

::::::::::
instrument

::::::::
sensitive

::
to

::::::
upper906

::::::::::
troposphere

:::::::::
humidity,

:::::::::::
significantly

::::::::
changes

:::
the

::::::
water

:::::
vapor

:::::::::
sounding

:::::::::
especially

::
in

:::
the907

:::::
polar

::::::
region

::
by

:::::::
moving

::::::::
towards

:::
the

:::::::::
MERRA2

::::
and

::::::
ERA5

:::::::::
fractional

::::::
water

:::::
vapor

:::::::
trends908

::::
seen

::
in

::::::
Figure

::::
13.

:::
We

:::::
note

::::
that

:::
the

:::::::
results

::::::
shown

::
in

::::
this

::::::
paper

:::
use

::::
the

::::
MLS

:
a-priori

:
.909

910

7.3 Column water vapor trends911

Column water vapor trends provide an assessment of the water vapor retrieval qual-912

ity in the lower atmosphere since this is dominated by the layers near the surface. For913

a hyperspectral infrared sounder over ocean the 1226 (Channel ID 1511) and 1231 (Channel914

ID 1620) spectral points are similarly impacted by surface emissivity and absorption by915

the
::::
The

:::::
water

::::::
vapor

:::::::::::
information

::
in

::::
the

::::::
lowest

:::::
layers

::
is
::::
best

:::::::::
retrieved

:::::
using

::::
the

:::::
weak

:::::
water916

::::
lines

::
in

::::::::
thermal

:::::::
infrared

:::::::
region.

:::::
This

::::
part

::
of

::::
the

:::::::
retrieval

::
is
::::::::::::
significantly

:::::::::::
complicated

::
by917

:::
the

::::::::::::
simultaneous

::::::::
presence

::
of

:::::::
nonzero

:::::::
surface

::::::::::::
temperature,

:::
air

::::::::::::
temperature

:::
and

::::::
water918

:::::
vapor

:::::::::
jacobians

::
in

::::
this

:::::::
spectral

:::::::
region,

::::::::
meaning

:::
the

::::::
AIRS

::::::::::
instrument

::::
has

:::::
much

:::::::
reduced919

:::::::::
sensitivity

::
to

::::
the water vapor continuum. However the 1226 channel is on the wing of920

a weak water vapor line and has additional absorption from the atmospheric water vapor921

column. Subtracting the observed brightness temperatures of these two channels BT1231922

- BT1226 is therefore a representative approximation to (but is not equal to) the column923

water, just as BT 1231 is a representative approximation to (but is not equal to) surface924

temperature. For example, using the simulated AIRS L1C clearsky radiance dataset over925

ocean we constructed for this paper using ERA5 monthly fields, we can regress the ERA5926

column water against the brightness temperature difference to obtain mmw ∼ 5.6 (BT1231-BT1226)927

+ 1.0; over land the emissivity could vary rapidly enough that this approximation breaks928

down
:::::
vapor

::::::::
amounts

::
in

:::::
these

::::::
lowest

::::::
layers.

:::
In

::::::::
addition

:::
the

:::::::::
changing

::::::::::::
concentration

::
of
:::::
very929

:::::
minor

:::::
gases

:::::
such

::
as

::::::::
CFC-11

::::
and

:::::::
CFC-12

:::::::::::::::::::::::::::::::::
Strow and DeSouza-Machado (2020)

:::
are

:::::
quite930

::::::
evident

:::
in

:::
the

::::::::
spectral

::::::
trends,

:::::::
further

::::::::::::
complicating

:::
the

::::::
water

:::::
vapor

::::::
trend

:::::::
retrieval

::::
for931

:::
the

::::::
lowest

:::::
layers.932

The left hand panel of933

934

Figure 10 shows the zonally averaged column water vapor trends, while the right935

hand panel shows the zonally averaged BT1231 - BT1226 trend (notice the multiplication936
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Figure 10.
::::::
Zonally

::::::::
averaged

::::::
column

::::::
water

:::::
vapor

:::::
trends

:::
for

:
AIRS_RT

:
,
:::::
AIRS

:::
L3,

::::::::::
CLIMCAPS

:::
L3,

:::::
ERA5

::::
and

:::::::::
MERRA2.

factor of 5.6 mentioned above will roughly equalize the y-axis of the two panels). The937

gray curve is the AIRS L1C observations, while the black curve is the reconstruction from938

the retrieval; the rest of the curves come from the fast model simulations using the relevant939

model/data fields. The error bars
:
;
:::
not

::::::
shown

::::
are

:::
the

:::::
error

::::
bars

::::::
which

:
are on the or-940

der of ± 0.005 mm/year.941

The column water vapor trends for , AIRS L3, CLIMCAPS L3, ERA5 and MERRA2.942

The left hand panel shows the zonal averages, while the right hand panel shows the BT1231-BT1226943

zonally averaged trends.944

Close examination of the right hand panel AIRS_RT
:
is

:::::
from

:::
our

:::::::::
retrievals

:::::
while945

:::
the

::::
rest

:::
are

:::::::
directly

:::::
from

:::
the

::::::
NWP

:::
or

::
L3

::::::
model

::::::
fields.

::::::
Close

:::::::::::
examination

:
shows the CLIM-946

CAPS L3 column water trend is nearly identical to the MERRA2 trend, as is also seen947

in lower atmosphere water vapor trends shown later in Figure 13. Conversely the col-948

umn water vapor trends for AIRS L3 are negative in the lower troposphere in the mid-949

latitudes and tropics, which is not to be expected given that the surface temperature trends950

are positive. AIRS_RT nominally agrees with ERA5 and MERRA2 in the tropics and951

midlatitudes, but is smaller than either in the northern polar regions.
:
A

::::::::
reduced

::::
rate952

::
for

:
AIRS_RT

::
is

:::::::::::
additionally

::::
seen

::
in

::::
the

::::
0-50

::
N

:::::::::
latitudes,

::::::
where

:::::
there

::
is

::
a

:::::
larger

::::::::
fraction953

::
of

::::
land

::::
(for

::::::
which

:::
we

::
do

::::
not

:::
use

::::
the

::::::::::
assumption

:::
of

::::::::
constant

:::::::
relative

:::::::::
humidity)

:::::::::
compared954

::
to

:::
the

:::::::::
Southern

:::::::::::
Hemisphere.

:::::::::
Screening

::::
out

:::
the

:::::
tiles

::::
over

::::
land

:::::::
slightly

:::::::::
improves

:::
the

::::::::::
agreement955

:::::::
between

:::::::::
reanalysis

::::::::
(ERA5,

::::::::::
MERRA2)

::
vs

:
AIRS_RT

::::::
column

::::::
water

::::::
trends.

:::::::::::::
Examination956

::
of

:::
the

::::::::
spectral

::::::
trends

::
in

:::
the

::::::::
window

::::::
region

::::
does

::::
not

::::
shed

::::
any

:::::
more

:::::::
insight

::::
into

:::
the

::::::::::
differences,957

::
as

:::
the

:::::::::::
observation

:::::::
spectral

::::::
trends

::::
and

::::::
NWP

::::::::::::
reconstructed

:::::::
trends

:::
are

::::
very

:::::::
similar

::::
and958

::
we

::::
are

::::::
fitting

:::
the

::::::::
observed

:::::::
trends.

:
The magnitudes and patterns look similar to the 2005-959

2021 column water trends shown in Borger et al. (2022), which were derived using ob-960

servations from the Ozone Monitoring Instrument (OMI). We point out their 16 year zon-961

ally averaged trends look similar to the 20 year ERA5 zonally averaged column water962

trends between -60◦S and -10◦S, but become almost a factor of 2 larger between -10◦S963
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Figure 11. The 400 mb fractional water vapor trends for (left) AIRS_RT and (right) ERA5
show general agreement except in the Southern Polar Regions.

and +40◦N; the zonally averaged OMI 16 year trends are negative in the polar regions.964

The column water trends are summarized in Table 4.965

:

DATASET OMI AIRS_RT ERA5 MERRA2 AIRS L3 CLIMCAPS L3
mm /year

::::
yr−1 16 years 20 years 20 years 20 years 20 years 20 years

with MLS GLOBAL (cosine average) 0.051 0.021
:::::
0.021

:
0.035 0.036 -0.009 0.038

TROPICAL 0.083 0.028
:::::
0.028

:
0.047 0.042 -0.015 0.045

no MLSGLOBAL (cosine average) 0.029 TROPICAL 0.039
Table 4. Column water trends based on OMI data (16 years) and AIRS_RT, ERA5 and
MERRA2 (20 years). The units are in mm /year

:::
yr−1; the uncertainties are on the order of 0.1

mm /year
:::
yr−1

:
for OMI and AIRS_RT, and half that for ERA5 and MERRA2, and AIRS L3

and CLIMCAPS L3.trends using MLS a-priori are shown in the table, as are trends without the
MLS a-priori

.

D/N differences (not shown) for AIRS_RT were on the order of ± 0.005 mm /year966

::::
yr−1

:
(with daytime trends being smaller over land), for AIRS L3 were on the order of967

± 0.01 mm /year
::::
yr−1 or more (with larger values happening over the daytime tropi-968

cal oceans), while that for ERA5 and CLIMCAPS L3 were typically on the order of ±969

0.03 mm /year
::::
yr−1 or less. Figure 11 shows the 400 mb fractional water vapor trends,970

with the left panel being the AIRS_RT trends while the right panel is the ERA5 trends.971

Note that there is general agreement except in the Southern Polar region, which is
::
as972

also seen later in Figure 13 to some extent in the other two observational L3 datasets973

(AIRS v3 and CLIMCAPS). This could be related to a paper
::::
work

:::
by Boisvert et al. (2019)974

who showed decreasing evaporation from the Southern Ocean in the 2003-2016 period975

due to increasing ice cover.976

977

7.4 Zonal atmospheric temperature and water vapor trends978

979
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Figure 12. Zonally averaged dT/dt shown in 5 panels. Horizontal axis is latitude while verti-
cal axis is pressure. The y-limits are between 10 to 1000 mb, on a logarithmic scale.

Figure 12 shows the zonally averaged atmospheric temperature trends from five of980

the datasets in Figures 7,10 above. In the troposphere the AIRS_RT retrievals show the981

same general features as the trends from ERA5, though they begin to diverge in the strato-982

sphere and especially above that. In particular AIRS_RT does not show warming in the983

Southern Polar stratosphere; we have separately looked into seasonal trends and noted984

that our retrieved September/October/November temperature trends in the upper at-985

mospheric Southern Polar regions are on the order of -0.12K /year
::::
yr−1, possibly lead-986

ing to an overall no net heating/cooling for the annual trends. In addition we point out987

that both our results and AIRS v7 L3 show a hint of cooling over the tropical surfaces.988

Note that CLIMCAPS is initialized by MERRA2, and their temperature trends are quite989

similar. AIRS v7 looks similar to AIRS_RT except in the tropics where it almost has990

cooling in the lower troposphere and much more warming in the lower stratosphere. The991

correlations between AIRS_RT and the [AIRS L3, CLIMCAPS L3, MERRA2, ERA5]992

temperature trends of Figure 12 are [0.74,0.65,0.74,0.72] respectively.993

994

Figure 13 shows the zonally averaged atmospheric fractional water vapor trends995

(d/dt WV(z,t)/<WV(z,t)>). The five panels are markedly different from one another.996

The AIRS_RT trends resemble those of ERA5 in the tropical troposphere, though we997

do not have drying in the lower tropical layers. Conversely, the observed trends in the998

Southern Polar (AIRS L3, CLIMCAPS L3 and AIRS_RT) show drying rather than wet-999

ting, though AIRS_RT is less than that of CLIMCAPS/MERRA2. AIRS_RT is an out-1000

lier in the upper polar atmosphere trends, as both the signals and the jacobians are close1001

to zero. Of some concern is a little bit of drying in the northern polar region, where there1002
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Figure 13. Zonally averaged dWVfrac/dt shown in 5 panels. Horizontal axis is latitude while
vertical axis is pressure. The y-limits are between 100 to 1000 mb, on a linear scale.

are low H2O amounts leading to small jacobians. CLIMCAPS v2 looks quite similar to1003

the MERRA2 trends. AIRSv7 shows substantial drying in the lower troposphere, and1004

considerable wetting in the upper troposphere, compared to any of the other datasets.1005

Spectral closure studies (using the AIRS v7 H2O trend × the H2O jacobians derived above1006

from ERA5 average profiles) are not shown here, but differ noticeably from the CCR trends1007

from AIRS v7 in the 1300-1600 cm−1 region, indicating there are inadequacies in the AIRS1008

V7 water vapor retrievals. The correlations between AIRS_RT and the [AIRS L3, CLIM-1009

CAPS L3, MERRA2, ERA5] fractional water vapor trends of Figure 13 (limited to 1001010

mb, 1000 mb) are [0.65,0.24,0.36,0.58] respectively.1011

7.5 Addition of Microwave Limb Sounder Water Vapor A-priori1012

The Microwave Limb Sounder (MLS), on board NASA’s Aura platform, is designed1013

for sounding of the atmosphere above 300 mb. We computed water vapor trends from1014

the L3 data produced for that instrument (above 300 mb) and used them as an for the1015

retrieval.1016

dWVfrac/dt (left) without and (right) with MLS in the upper atmosphere1017

Figure 9 shows the retrieved fractional water vapor trends when the trend in the1018

upper atmosphere in the left and right panels were zero, or used MLS trends, respectively.1019

One sees that the additional information brought in by the instrument sensitive to upper1020

troposphere humidity, significantly changes the water vapor sounding especially in the1021

polar region by moving towards the MERRA2 and ERA5 fractional water vapor trends1022

seen in Figure 13.1023
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8 Uncertainty1024

The uncertainties for the AIRS v7 geophysical products are impacted by radiance1025

noise amplification due to cloud clearing Susskind et al. (2003) and the neural net first1026

guess, while state vector errors are estimated based on regressions. CLIMCAPS L2 geo-1027

physical products are similarly impacted by cloud clearing noise in the radiances, but1028

these are fully propagated together with geophysical error estimates from the MERRA21029

first guess, through the retrieval algorithm which uses Optimal Estimation Smith and1030

Barnet (2020).
::
No

::::::::
estimate

::
of
::::::::::::
uncertainties

::::
are

::::::::
available

:::
for

:::
the

::::::::
monthly

:::
L3

:::::::::
products.1031

1032

The uncertainties for the AIRS_RT trends is much more straightforward : the spec-1033

tral uncertainties shown in Figure 4 are used together with the state vector covariance1034

matrices to generate the uncertainty matrix using the relevant equations of Optimal Es-1035

timation (Rodgers, 2000); we use the diagonal elements for the final uncertainties. Pan-1036

els (A) and (C) of Figure 14 shows the zonally averaged (D/N) uncertainties as a func-1037

tion of pressure and latitude. Inspection of the radiance trends uncertainties shown in1038

the center panel of Figure 4 shows the upper atmosphere temperature sounding region1039

(650-700 cm−1) has much larger uncertainty in the polar regions. The instrument and1040

spectroscopy characteristics, coupled with these observational uncertainties, are such that1041

for temperature the smallest errors are in the tropics while the largest errors are in po-1042

lar upper atmosphere, which are the regions below 100 mb where the ERA5 trends dif-1043

fer most from AIRS_RT trends. Similarly for water vapor the larger errors are in the1044

lower atmosphere and above about 300 mb; the constant RH assumption and MLS a-1045

priori help alleviate the errors.1046

The h = ztest(trend,µ=0,trend uncertainty)
:::::
Z-test confirmed this picture, as seen1047

in panels (B) and (D) of Figure 4
::
14, which show the temperature and fractional water1048

vapor trends, together with black dots marking the (latitude,altitude) points where the1049

zero trend null hypothesis at the default significance level of
::::::
trends

:::
are

::::::
larger

:::::
than

:::
the1050

::::::::::
uncertainty

::
in

::::
the

::::::
trends,

:::
at

:::
the

:
5% was rejected

::::::::::
significance

::::
level. This happens in panel1051

(B) for the temperature trends in most of the tropical/mid-latitude free troposphere (and1052

stratosphere) but not at the southern polar stratosphere; and in panel (D) for fractional1053

water vapor trends in the 200-600 mb range, from the Southern Polar region to about1054

+60 N latitude, and some spots in the Northern Polar.1055

1056

9 Discussion1057

In general for surface temperature trends, the disagreements between the six sets1058

shown in Figure 7 are over the polar regions and over land (especially over the Amazon1059

and Central Africa) and are smallest over tropical and mid-latitude oceans, indicating1060

the best agreements, except for slightly larger differences off the western coast of the Amer-1061

icas and Africa (which have a prevalence of MBL clouds). The atmospheric temperature1062

trends in general agreed except for the upper atmosphere polar regions and in the high1063

altitudes (less than about 200 mb). Similarly fractional water vapor trends differed most1064

in the upper atmosphere (200 mb and above) and in the tropical/mid-latitude 600-8001065

mb region. A quick glance at Figure 13 shows the former is due to lower sensitivity to1066

upper atmosphere water vapor, leading the AIRS_RT retrievals to have low values while1067

the AIRS L2 retrieval is initialized by a neural net; conversely the latter is due to the1068

AIRS L3 retrieval being negative while the rest were mainly positive. Similarly the AIRS_RT1069

retrieval differs above the Antarctic continent.1070

In general the observed surface temperature trends from the AIRS_RT retrievals1071

agree with the ERA5 and MERRA2 trends, as well as the NASA GISS trends, except1072
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Figure 14. Zonally averaged D/N plots of (A) temperature uncertainties in K /yr
::

−1
:
and (B)

temperature trends in K /yr
::

−1
:
together with null hypothesis. (C) and (D) are the same except

for fractional water vapor uncertainty and trends in 1/year. See text for more detailed explana-
tion.
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in the Southern Antarctic. That is a region where there are few surface observations; for1073

retrievals there are competing effects of using ice vs ocean surface emissivity. Overall,1074

the AIRS_RT retrieved surface temperature trends are typically in between ERA5 and1075

MERRA2 for land + ocean in all regimes (tropical, midlatitude and polar), though slightly1076

larger overall for ocean than the two reanalysis datasets; in general they are closer to the1077

ERA5 trends than the MERRA2 trends.1078

Strow et al. (2021) demonstrated that the long- and medium- wave channels of the1079

AIRS instrument are radiometrically stable to better than 0.002-0.003 K /year
::::
yr−1, which1080

is much smaller than the surface and tropospheric temperature trends in the reanaly-1081

sis models, AIRS L3 data and our retrieved trends. After
:
A
::::::::
separate

::::::::
analysis

::
of

::::::::
spectral1082

:::::
trend

::::::::::::
uncertainties

::::
after

:::::::::
05,10,15,20 years of observations, Figure ?? shows the trend spectral1083

uncertainties
::::
years

:::::
(not

::::::
shown

:::::
here)

:::::
show

::::
that

:::::
these

::::::::::::
uncertainties

:::::
have

::::
been

::::::::
steadily1084

:::::::::
decreasing

::::
and

:
are now approaching this number,

:::
as

::::
can

::
be

:::::
seen

::
in

:::
the

:::::::
bottom

::::
left

:::::
panel1085

::
of

::::::
Figure

::
3. Furthermore, though we cannot guarantee only cloud free scenes in our cho-1086

sen Q0.90 dataset used in this paper, the high correlations between other dataset sur-1087

face trends compared to ours, is a good indication that our results come from mostly cloud-1088

free scenes, or scenes whose clouds have negligible impact on our results.1089

The observed zonal temperature trends agree with those from the models and the1090

AIRS L3 products, except in the polar regions. Again this could be an issue of using slightly1091

incorrect surface emissivity for the AIRS_RT retrievals. In addition we point out that1092

since there is very little water vapor, the temperature jacobians near the surface are quite1093

small in magnitude (compared to more humid atmospheres) and so it is difficult to sep-1094

arate out the effects of surface temperature trends versus lower atmosphere temperature1095

and H2O trends. The quantile construction used in this paper means that for example1096

tiles straddling the subcontinent of India and the ocean will preferentially pick the land1097

surface observations for daytime, which could lead to misleading trends on these coastal1098

tiles. It is possible to subdivide the 3◦× 5◦tiles into for example 1◦× 1◦grids and do the1099

analysis, but the number of observations per small grid cell would drop, leading to more1100

noise in the retrieved trend.1101

The AIRS_RT retrieved absolute column water trends are equal to/slightly larger1102

than ERA5/MERRA2 in the tropics and below both of them in the midlatitudes; AIRS_RT1103

ocean column water trends were slightly smaller than both ERA5 and MERRA2 over1104

ocean, and in-between them over land. We note the difficulties we have retrieving H2O1105

close to the surface and in the upper atmosphere. This is simply a consequence of the1106

sensitivity of the infrared sounder, namely most of the averaging kernels peak in the 300-1107

600 mb range. AIRS_RT column water trends agree with those from ERA5 and MERRA21108

column water trends in the tropics; nevertheless even with expected lowered sensitivity1109

to water vapor in the lower altitudes, we were able to retrieve similar column water va-1110

por trends to the NWP models both in the tropics and in the mid-latitudes. The dif-1111

ferences become more acute in the polar regions since the low average amounts of wa-1112

ter vapor mean the water vapor jacobians are very small, as were the observed trends1113

in the WV channels. However, we point out that our column water trends, which are both1114

quite sensitive to water vapor in the lower atmosphere, are in good agreement with those1115

from NWP models.1116

We point our here that our results are relatively robust to changes in the covari-1117

ance or Tikonov parameter settings. For instance changing them by factors of two would1118

keep the trends about the same, though of course the uncertainties would change.1119

Given the complex numerical algorithms used in both the reanalysis models and1120

the AIRS L3 retrievals as well as those in the AIRS_RT trends, it is difficult to offer pre-1121

cise explanations for any of the trends shown above. There are however a few general1122

points that can be made. The first is that since infrared instruments are sensitive to the1123

300-800 mb region and lose sensitivity outside this, the retrievals from AIRS_RT and1124
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AIRS L3 have difficulties with water vapor in the lower
:::::::::
(Planetary

::::::::::
Boundary

::::::
Layer)

:
and1125

upper troposphere
::::::
/lower

:::::::::::
stratosphere. One way to mitigate this is to use

::::::
trended

:
data1126

from external sources ; for
:
in

::::
the a-priori

:
,
:::::
while

:::::::
keeping

::::
the a-priori

::::::
trends

:::
for

:::
all

:::::
other1127

::::::::::
parameters

::
as

::
0.
::::
For

:
example we have shown we can use the MLS data above 300 mb1128

without significantly degrading the AIRS_RT retrieval in the middle and lower atmo-1129

sphere; conversely the CLIMCAPS retrievals are initialized by MERRA2 and while they1130

can pull out weather signals, their L3 trends are still quite closely tied to the MERRA21131

trends. The tropical and mid-latitude ocean surface temperature trends from the numer-1132

ical models that assimilate data, L3 products and AIRS_RT are very similar; however1133

they start to show differences where there are few in-situ data combined with problems1134

with ice identification (surface emissivity)/cold temperatures which exacerbate the drift-1135

ing AIRS detector problems Strow et al. (2021), such as the Arctic and Southern Ocean.1136

10 Conclusions1137

We have described a novel method to obtain global thermodynamic atmospheric1138

climate trends, starting from infrared allsky hyperspectral observations which are then1139

subset for “nominally clear” scenes. Our retrieved trends are derived using trends from1140

well characterized (radiometrically stable) radiances and from zero a-priori (except for1141

a constant relative humidity assumption). This makes them much more direct and trace-1142

able than trends from traditional L2 retrieval algorithms, which use complicated a-priori1143

information. We also did “radiative closure” tests by running the monthly NWP or L31144

fields through a radiative transfer model to compare the spectral trends so obtained against1145

the observed spectral trends, which showed the most disagreement in the water vapor1146

sounding regions.1147

The temperature and water vapor trends retrieved from the “nominally clear” ra-1148

diance trends resemble those computed from monthly ERA5 and MERRA2 reanalysis.1149

The radiative spectral closure helps identify the cause of differences in the geophysical1150

trends, rather than solely attributing them to deficiencies (eg the well known reduced1151

sensitivity to water vapor near the boundary layer and above 200 mb) with our retrieval.1152

For example the AIRS_RT temperature trends are quite similar to the reanalysis (MERRA2/ERA5)1153

trends, while the water vapor (and/or Relative Humidity) trends are quite different, es-1154

pecially in the lower troposphere and upper troposphere, which is clearly manifest as dif-1155

ferences in the spectral trends in the water vapor sounding region.1156

The 20 years of AIRS observations were binned into nominal 3 × 5 degree grid boxes1157

covering the planet, with a time step of 16 days, from which anomalies and trends were1158

obtained. To alleviate the reduced sensitivity of hyperspectral sounders to water vapor1159

in the lower atmosphere we used an assumption of 0.01 increase in relative humidity to1160

initialize the a-priori lower atmosphere fractional water vapor rates, while we similarly1161

used Microwave Limb Sounder trends as an a-priori to address the high altitude water1162

vapor deficiencies caused by lower sensitivity to upper atmosphere water vapor. New or1163

updated time dependent surface emissivity databases may become available in the fu-1164

ture, enabling us to include those effects into Equation 4. Problems in the polar regions1165

and Planetary Boundary Layer water vapor retrievals will be harder to overcome since1166

there is very little sensitivity to water vapor in these regions, together with fewer obser-1167

vations to compare against, though more work is planned to address both of these.1168

In this paper we used the 90th quantile (Q0.90) nominally “hottest” observed BT12311169

data to form a time series over which to obtain radiance trends, after establishing that1170

the spectral trends from this quantile differed by less than about ± 0.0015 K /yr
::::
yr−1

1171

from the 50th (or average) quantile. In the future we plan to base the data subset se-1172

lection on MODIS cloud products (obtained at 1 km resolution compared to the AIRS1173

15 km resolution). In any case the AIRS L1C Q0.90 spectral trends used for the AIRS_RT1174

results are very comparable to trends from quality assured binned AIRS CCR data Manning1175
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(2022). The quantile method allows us to select which data to use in the trends : we have1176

explored doing the trend retrievals using the cloud fields contained in ERA5, together1177

with the TwoSlab cloud algorithm De Souza-Machado et al. (2018) to compute jacobians1178

when clouds are present, together with trends from the Q0.50 dataset described above.1179

The retrieved geophysical trends resemble those described above in the mid to upper at-1180

mosphere, and differ in the lower atmosphere, but more work is needed on this and is1181

not discussed further. Longwave clear sky flux trends (both outgoing top-of-atmosphere1182

and incoming bottom-of-atmosphere) and climate feedbacks will be discussed in a sep-1183

arate paper.1184

While the Aqua platform is scheduled to be terminated within the next few years,1185

copies of near identical CrIS instruments are already in orbit, and more will be launched1186

over the next few years, till at least 2040. The Climate Hyperspectral Infrared Radiance1187

Product (CHIRP) Strow et al. (2021) will seamlessly combine the AIRS data between1188

2002-2015 to CrIS data from 2015-2040 to obtain a 40 year observational radiance record1189

over which to study climate. This availability means that AIRS_RT and future AIRS/CrIS1190

versions, is well positioned to enable climate analysis of geophysical trends for years to1191

come.1192

Appendix A Day versus Night surface temperature trend differences1193

Figure A1 shows the (top) daytime and (middle) nighttime surface temperature1194

trends; from left to right the datasets are (observational) AIRS_RT, AIRS L3, CLIM-1195

CAPS L3 and (reanalysis) ERA5. In general the AIRS observational datasets show en-1196

hanced daytime cooling over the Indian subcontinent and Central Africa, compared to1197

the ERA5 model; they also show daytime warming trends over continental Europe and1198

central Asia and the Amazon are larger than during the nightime. With the large ocean1199

heat capacity and smaller land heat capacity, the land is expected to show more of a di-1200

urnal cycle than ocean. ERA5 sees warming over Eastern/Central Africa during daytime1201

while the observational datasets see cooling. Similarly the three observational datasets1202

see more daytime cooling over the Indian sub-continent and south eastern Australia than1203

does ERA5; we omit more detailed analysis in this paper. During the nighttime, the AIRS1204

L3 product has cooling over C. Africa and parts of the Amazon. The day-night differ-1205

ences are seen in the bottom row of the same figure. Note the colorbar is the same for1206

all three rows. The differences are close to zero over the ocean. AIRS_RT and CLIM-1207

CAPS L3 see more daytime cooling over E. Africa and the Indian subcontinent. Over-1208

all the magnitude of the day - night differences for the observations are larger for the AIRS1209

observational datasets than for ERA5. ERA5 also sees negative differences over Central1210

Asia compared to the AIRS observational datasets, which see positive differences (higher1211

surface temperature trends during the daytime).1212

1213

The atmospheric temperature and fractional water vapor day-night differences are1214

quite small (compared to the average values) and not shown here; AIRS L3 shows no-1215

ticeable more wetting of the 600-800 mb region during daytime versus nightime, com-1216

pared to the other three.1217

Data availability
::::::
Open

:::::::::::
Research

::::::::
Section1218

The AIRS L3 and CLIMCAPS L3 data products, as well as the AIRS L1C radi-1219

ances are freely available to the public on the NASA servers. MERRA2 and ERA5 and1220

GISTEMP model output are also freely available.1221
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Figure A1. Top two rows : The (top) day and (middle) night surface temperature trends for
AIRS_RT, AIRS L3, CLIMCAPS L3 and ERA5. Third row (bottom) is the D-N difference.
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