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Abstract14

Daily spectral radiance observations by NASA’s Atmospheric Infrared Sounder contain15

detailed information about surface and atmospheric temperature and water vapor. We16

obtain climate geophysical trends from 20 years (2002/09-2022/08) of AIRS observations17

using a novel method operating mostly in radiance space. The observations are binned18

into 3 × 5 degree tiles using 16 day intervals, after which nominally clear scenes are se-19

lected for each tile to construct the spectral radiance time series. De-seasonalized spec-20

tral trends are then obtained, which are inverted using a physical retrieval to obtain geo-21

physical trends. This approach is distinct from traditional use of radiances whereby trends22

are generated after operational retrievals or assimilation into Numerical Weather Pre-23

diction models. Our approach rigorously ties the derived geophysical trends to the ob-24

served radiance trends, using far fewer computational resources and time. The retrieved25

trends are compared to trends derived from ERA5 and MERRA2 reanalysis model fields,26

and NASA Level3 AIRS v7 and CLIMCAPS v2 data. Our retrieved surface tempera-27

ture trends agree quite well with ERA5, CLIMCAPS and the GISS surface climatology28

trends. Atmospheric temperature profile trends exhibit some variability amongst all these29

data sets, especially in the polar stratosphere. Water vapor profile trends are nominally30

similar among the data sets except for the AIRS v7 which exhibits drying trends in the31

mid troposphere. Spectral closure between observed trends and those computed by run-32

ning the reanalysis and NASA L3 monthly fields though a radiative transfer code are dis-33

cussed, with the major differences arising in the water vapor sounding region.34

Plain Language Summary35

The current generation of infrared sounders, designed for weather forecasting pur-36

poses, have been operational for a long enough time to enable anomaly and trending stud-37

ies for climate purposes. The daily radiance observations are routinely used for opera-38

tional atmospheric state retrievals and assimilation into reanalysis models, after which39

climate anomaly studies are enabled. Here we use a purpose built algorithm to directly40

turn radiance observations into geophysical anomalies and trends with full error char-41

acterization. This unique approach for observational climate trending uses only stable42

low noise sounding channels, easily understood assumptions and well tested retrieval al-43

gorithms.44

1 Introduction45

On time scales of a few hours to a week, accurate time resolved, global measure-46

ments of atmospheric water vapor amounts and temperatures are necessary for short to47

medium range weather forecasting. Non condensing Greenhouse Gases (GHG) such as48

CO2 live in the atmosphere for relatively long times (on the order of 10-100 years). At49

these longer timescales, the gradually increasing opacity of the atmosphere (in the 50050

- 800 cm−1 (15-20 µm) infrared region of the electromagnetic spectrum) due to increas-51

ing CO2 amounts (∼ 2.2 ppmv/year (Keeling et al., 1976)) and other long lived GHG52

serves as a controlling knob mechanism (Muller et al., 2016) that can slowly increase the53

surface and air temperatures. A timeline summary of pioneering scientific work recog-54

nizing the contribution of GHG to Earth temperatures is found in (Anderson et al., 2016),55

including Joseph Fourier (1827) understanding the opacity of atmosphere to infrared ra-56

diation, John Tyndall (1872) recognizing infrared absorption by H2O and CO2, a pre-57

diction of rising surface temperatures from increasing GHG concentrations (Arrhenius,58

1896), to Guy Callendar (1958) correlating land surface temperature changes with in-59

creases in CO2. A key paper (Manabe & Wetherald, 1967) estimated a 2 K temperature60

increase of an atmosphere (with fixed relative humidity) for a CO2 doubling. An exam-61

ple of a more recent relevant paper modeling how CO2 increases change the atmospheric62

opacity is Jevanjee et al. (2021). Note the changing concentrations of other non condens-63
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ing GHG such as N2O and CH4 together with CO2 also change the opacities in other64

regions of the thermal and shortwave infrared, but they can be of diminished importance65

due to the nonlinear Planck function which peaks at about 15 µm for the 250-300 K tem-66

peratures typical of the Earth atmosphere.67

The higher temperatures from these and other external forcings increase the amount68

of water vapor that the atmosphere can hold. Water vapor itself is a GHG (Held & So-69

den, 2000; Muller et al., 2016) and serves to further increase the opacity of the atmo-70

sphere, both in the Far Infrared (0-500 cm−1) and in the thermal infrared window re-71

gion (800-1200 cm-1) and the water vapor sounding region (1350 - 2000 cm−1). Atmo-72

spheric water vapor amounts are highly variable in time and space. Though the lifetime73

of water in the atmosphere (the hydrological cycle of evaporation from surface, conden-74

sation into a cloud, precipitation back to the surface) is on the order of less than two weeks75

(van der Ent & Tuinenburg, 2017; Sodemann, 2019), the additional radiative forcing is76

a positive feedback which amplifies the temperature changes due to the long-lived GHG77

(Manabe & Wetherald, 1967; Muller et al., 2016). This also has implications for precip-78

itation changes (Held & Soden, 2006).79

There is therefore a need to have an accurate, global, high vertical resolution long80

term time series of temperature and water vapor measurements since they will provide81

a critical record of climate change, which will help scientists understand climate change82

by providing evidence based comparisons to outputs of climate models, as well as val-83

idate climate model predictions. Key documents which underscore the importance of ac-84

curate measurements of global temperature and humidity include the Intergovernmen-85

tal Panel on Climate Change (IPCC) reports; see for example (Houghton et al., 1990;86

IPCC, 2021).87

In this paper we focus on surface temperature, and atmospheric temperature and88

water vapor trends. Climate monitoring traditionally uses averages computed over 3089

consecutive years together with quantifying the linear trends (Thorne et al., 2011; Scher-90

rer et al., 2024). Monitoring observed short term trends (∼ 20-30 years) is possibly prefer-91

able to longer term trends (∼ 50-100 years) due to nonlinearities in the physical mod-92

els (Scherrer et al., 2024), and can help identify which regions are warming faster than93

others, confirm whether estimates from models agree with the observations, and iden-94

tify physical processes or regions where models need to be improved (for example cloud95

processes, natural variability due to volcanic eruptions and natural oscillations in the Earth96

system). Temperature increases affect the environment including for example sea level97

rises and melting of glaciers, and impact society by for example affecting crop yields and98

inducing heat related illnesses. Climate models predict a fingerprint of vertical trend pro-99

files together with uncertainties (Thorne et al., 2011) which can be compared against trends100

and uncertainties from observational data. Water vapor trends predicted by models can101

similarly be fingerprinted and compared against observations (Allan et al., 2022). Changes102

in atmospheric water vapor leads to radiative forcings (Dessler et al., 2008), changes in103

precipitation amounts, and through the release of latent heat as the vapor condenses into104

clouds, affect the distribution of heat and planetary circulation (Schneider & Levine, 2010).105

Observational data comes from two main sources. The first is ground based instru-106

ments, a prime example of which are radiosondes (Durre et al., 2006), which typically107

record temperatures, windspeeds and humidity measurements as a function of pressure.108

The data is available from the 1960s, but while these instruments can be regularly cal-109

ibrated, their coverage is sparse, typically over land and very little over ocean (though110

there is an extensive network of buoys to measure ocean temperature and salinity pro-111

files (Wong et al., 2020)). On the other hand satellite based observations covering the112

Earth started in the 1970s and are now available across almost the entire electromag-113

netic spectrum, from passive microwave and infrared sounders that provide global in-114

formation about temperature and humidity 24 hours a day, to passive visible and ultra-115

violet imagers that provide global information about clouds and aerosols during daytime116
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conditions, to active (lidar and radar) instruments that provide cloud and aerosol pro-117

file information with more limited coverage, to radio occultation instruments which use118

radio signals from the Global Positioning Satellites (GPS) to obtain temperature and119

humidity information. Each of these satellite instruments provide valuable information120

about the atmosphere. In this paper we use 20 years of observational data (September121

2002 - August 2022) from the Atmospheric Infrared Sunder (AIRS), which is a new gen-122

eration infrared nadir sounder.123

Model data can come from re-analysis (Kalnay et al., 1996; Gelaro & Coauthors,124

2017; Hersbach et al., 2020) or climate models (Eyring et al., 2016). In this paper we use125

re-analysis model data, which ingest observations from a wide variety of instruments. De-126

pending on the re-analysis model, the assimilation+dynamical system may give inaccu-127

rate trends because of one or more of the following reasons (Cai & Kalnay, 2004; Kistler128

et al., 2001; Shao et al., 2023) : they typically use observing systems that change with129

time as new in-situ or satellite based instruments become operational, the observations130

may have biases and errors that are not correctly accounted for, the assimilated obser-131

vations may be obtained (or simply not available) in cloud conditions, the dynamical mod-132

els cannot contain all the physics (eg land topography, cloud microphysics) at the finite133

sized grid boxes used, and often do not use eg time varying concentrations of CO2 or strato-134

spheric aerosols. Modern re-analysis systems have mostly addressed these issues (Dee135

et al., 2011) but there still are concerns in for example data sparse regions (Hobbs et al.,136

2020; Bromwich et al., 2024). We note that the 20+ years of AIRS observations (2002-137

2022) used in this paper meant we chose to exclude comparing climate model data from138

the latest (sixth) Coupled Model Intercomparison Project (CMIP6) since it covers the139

period 1850-2014 (Eyring et al., 2016).140

Another source of data used in this paper, also tied to observations, come from L2141

or L3 retrievals. Operational NASA AIRS daily Level 2 products and monthly Level 3142

products (derived from Level 2) used in this paper retrieve the atmospheric state using143

cloud-cleared radiances derived from a 3x3 grid of individual scenes. A main character-144

istic of traditional L2 retrievals is the requirement for a good a-priori state for each in-145

version, making errors in the a-priori difficult to distinguish from true variability in the146

observations. Measurements by visible imagers which have ∼ 1 km horizontal resolution147

or better (King et al., 2013) suggest global cloud free fractions of ∼ 30%, but the 15 km148

footprint of typical sounders means at most 5% of the hyperspectral observations can149

be considered “cloud-free.” Current operational NASA L2 products for AIRS use the method150

of cloud clearing on observed radiances in partly cloudy scene conditions before doing151

the geophysical retrieval. The cloud clearing method takes in the raw observed allsky152

radiances and solves for an estimate of clear column radiances by examining adjacent153

Fields of View (FOVs) to estimate the cloud effects on the observations. The method154

assumes any differences are solely due to different cloud amounts in each FOV, and sig-155

nificantly increases geophysical retrieval yields (to about 50-60%) (Smith & Barnet, 2023).156

The resulting cloud cleared radiances (CCR), distinct from clear sky radiances which are157

obtained under nominally clear conditions, have increased noise especially in the lower158

atmosphere sounding channels; in addition the subsequent retrieval depends on the first159

guess (which is a neural net for AIRS v7 and MERRA2 reanalysis for CLIMCAPS v2).160

The reader is referred to AIRS L2 literature (Susskind et al., 2003; Susskind, 2006; Susskind161

et al., 2014; Smith & Barnet, 2020, 2023) for more details about cloud clearing and the162

L2 algorithms.163

1.1 Using hyperspectral infrared radiance observations directly for cli-164

mate trending165

The “observational data → sophisticated assimilation or retrieval algorithms → daily166

or monthly products → climate trends” approaches outlined in the previous paragraph167

are not tailored for climate anomalies or trending. Both reanalysis and Level 2 products168
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require large computational resources, that preclude full dataset re-processing to help169

fully understand trends. In this paper we use an approach purpose-designed to produce170

climate anomalies and trends directly from infrared radiance observations. We work ex-171

clusively in radiance space and form either anomalies or trends from the underlying well172

characterized and understood radiances (Strow & DeSouza-Machado, 2020), in order to173

do a geophysical trend or anomaly retrieval. Moreover, our novel approach has zero tem-174

perature a-priori and minimal water vapor a-priori. This completely sidesteps time vari-175

ability and the accuracy of the a-priori which causes errors in the retrievals, and ensures176

our work examines trends directly inferred from the radiances versus those from tradi-177

tional methods. This leads to more unbiased results that directly highlight the condi-178

tions (for example stratospheric water vapor) where the sensor has limited sensitivity.179

The work presented here, once the averaged/sorted observations are available, can be180

processed in hours to days, and can be duplicated by small research groups with ease.181

The Outgoing Longwave Radiation (OLR) balanced against the Incoming Solar Ra-182

diation at the top of the Earth’s atmosphere, is the fundamental driver of the climate183

system (Brindley & Bantges, 2016). Broadband measurements (integrated across the en-184

tire longwave, or entire shortwave bands) have been available for over 40 years, and pro-185

vide a valuable record. However the single integrated measurement effectively smears out186

competing effects such as increases in OLR due to increases in surface temperatures ver-187

sus decreases in OLR due to changing CO2,H2O,O3,CH4 Greenhouse Gas (GHG) con-188

centrations (Brindley & Bantges, 2016). Passive microwave and infrared instruments with189

handfuls of channels have also been flown since the late 1970s for meteorological purposes.190

For example the Microwave Sounding Unit (MSU) and Advanced Microwave Sounding191

Unit (AMSU) provide global scale records of upper atmospheric temperatures (Mears192

& Wentz, 2009, 2016). Another example is the 20 channel High resolution Infrared Ra-193

diation Sounder (see for example (Harries et al., 1998; Shi & Bates, 2011; Menzel et al.,194

2016)), which provides an 40+ year global observational dataset. The advantage of these195

instruments is their spectrally resolved channels are capable of providing radiance mea-196

surements from which one can quantify the effects of individual GHG and surface/air197

temperature changes. Limitations with these observational records include drifts of the198

orbits or instruments, inter-calibrating the individual instruments contributing to the199

record (which individually have lifetimes of the order of 5-10 years), and the spectrally200

wide channels mean the vertical weighting functions are very broad which only allows201

for limited vertical resolution (typically a few kilometers); the same wide channels also202

typically include the radiative effects of more than one gas. All these serve to constrain203

climate studies. For example the upper tropospheric water vapor sensitivity of the HIRS204

instruments are typically deep layers between 200-500 mb (see Muller et al. (2016) and205

references therein), while the water vapor feedback is very sensitive to the H2O changes206

in the thinner layers extending between the cold dry upper troposphere and lower strato-207

sphere (Muller et al., 2016).208

These limitations have largely been mitigated by the new generation of infrared sounders,209

which have high spectral resolution (superior vertical resolution), are very stable and whose210

overlapping orbits and long lifetimes allows for continual inter-calibration and monitor-211

ing of the stability of these instruments; see for example (Strow et al., 2021). The first212

of the new generation of low noise, high stability hyperspectral sounders is NASA’s At-213

mospheric Infrared Sounder (AIRS). The instrument has been in continuous operation214

since September 2002, making Top of Atmosphere (TOA) radiance observations at a typ-215

ical 15km (at nadir) horizontal resolution. Follow on instruments with similar charac-216

teristics and abilities include the ESA’s Infrared Atmospheric Sounding Interferometer217

(IASI) and NOAA’s Cross-track Infrared Sounder (CrIS), operational since June 2007218

and March 2012 respectively. The latter two already have follow on missions planned till219

the 2040s, and together these three sounders will provide scientists with a 40 year high220

quality, near continuous observational dataset for climate studies.221
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Infrared radiances contain a wealth of information. A short list focusing on scien-222

tific contributions using the AIRS radiance observations includes improvements in sur-223

face temperature, atmospheric temperature and water vapor profiles in weather forecast-224

ing models (see for example LeMarshall et al. (2006); Andersson et al. (2007)), retriev-225

ing mixing ratios of greenhouse gases such as CO2 (Chedin et al., 2005), CH4 (Zou et226

al., 2019) and O3 (Fu et al., 2018). Clouds (Kahn et al., 2005, 2014) and large aerosols227

(volcanic ash and dust) (Carn et al., 2005; De Souza-Machado et al., 2010) can also be228

detected and quantified. Examples of other trace gases that can be detected and quan-229

tified are CO (McMillan et al., 2005) and NH3 (Warner et al., 2016). This list is not ex-230

haustive and in addition multiple papers have similarly been published using CrIS and231

IASI data.232

The stability and accuracy of the AIRS instrument is documented in recent work233

on analyzing 16 years of AIRS radiance anomalies over cloud-free ocean (Strow & DeSouza-234

Machado, 2020). Geophysical retrievals on the anomalies yielded CO2, CH4, N2O and235

surface temperature time series that compared well against in-situ NOAA Global Mon-236

itoring Laboratories (GML) trace gas measurements and NOAA Goddard Institute of237

Space Studies (GISS) surface temperature data respectively. A significant difference be-238

tween this paper and (Strow & DeSouza-Machado, 2020) is the nominally clear scenes239

used in this paper are selected uniformly from all over the Earth, while the clear scenes240

in the latter were zonal averages which were sometimes concentrated in certain regions.241

Here we derive geophysical trends from 20 years (September 2002 - August 2022) of AIRS242

measurements over ∼ 3 × 5 degree tiles covering the Earth, chosen such that the num-243

ber of observations in each tile is roughly equal. A companion paper will utilize the geo-244

physical trend results to derive Outgoing Longwave Radiation (OLR) trends and non-245

local clearsky feedback parameters. Nominally clear scenes for each tile are picked out246

using a quantile approach; from the time series, radiances trends are made over the en-247

tire Earth, from which geophysical trends are retrieved.248

Observed infrared spectral trends from AIRS has already been a focus of earlier249

work by (X. Huang et al., 2023) who studied a slightly shorter time period (2002-2020)250

using the nadir L1B radiance observations (which have no or minimal frequency correc-251

tions compared to the L1C radiance dataset we use here). Similarly the paper by (Raghu-252

raman et al., 2023) converted the AIRS observed radiances to Outgoing Longwave ra-253

diation (OLR) in the 0-2000 cm−1 range, but neither of these studies involve retrieving254

geophysical trends from radiance spectral trends. Instead they include the effects of GHG255

forcings and convert various model trends (such as ERA5) to spectral trends for com-256

parison against the observed spectral trends, which we also show in Appendix B. Teix-257

eira et al. (2024) used the AIRS observations between 2003-2012 to measure the impact258

of increased CO2 on the outgoing longwave radiation. Another noteworthy examination259

of the time evolution of high spectral resolution infrared radiances (converted to spec-260

tral outgoing longwave radiation (OLR) fluxes) by Whitburn et al. (2021) covered 10 years261

(2007-2017) of IASI observations. They confirmed that the IASI-derived fluxes agreed262

well with increases in GHG gas concentrations and El-Nino Southern Oscillation (ENSO)263

events within that time frame. A more recent paper (Roemer et al., 2023) used the 10264

year IASI observations to derive allsky longwave feedback spectral components (water265

vapor, CO2, window, ozone) and total values, while also estimating clear sky feedback266

values. Other relevant studies involving high spectral resolution infrared measurements267

include the allsky interannual variability at different spatial scales using 5 years (2007-268

2012) of IASI observations (Brindley et al., 2015), and comparing Global Climate Model269

simulations to AIRS radiances as a diagnostic of model biases (Y. Huang et al., 2007).270

We will refer to our results as the AIRS Radiance Trends (AIRS_RT). Compar-271

isons are made against monthly output from the European Center for Medium Weather272

Forecast fifth generation reanalysis (ERA5) (Hersbach et al., 2020) and NASA’s second273

generation Modern-Era Retrospective analysis for Research and Applications (MERRA2)274
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(Gelaro & Coauthors, 2017), and also against the official monthly AIRS L3 products which275

are AIRS v7 L3 (Susskind et al., 2014; Tian et al., 2020) and CLIMCAPS v2 L3 (Smith276

& Barnet, 2019, 2020). Detailed geophysical trends and spectral closure studies are pre-277

sented for the averaged ascending (daytime (D)) and descending (nightime (N)) trends;278

the appendix briefly discusses separate D and N trends.279

2 Datasets used in this study280

Three main types of datasets are used in this study. The first is the AIRS L1C ra-281

diance observation dataset we analyze for this paper, which has both daytime (D) and282

nightime (N) (ascending and descending) views of the planet. Second is the monthly op-283

erational L3 retrieval data, which are the AIRS v7 and the CLIMCAPS v2 products, also284

separated into D/N subsets. Finally we also compared to trends from ERA5 and MERRA2285

monthly reanalysis model fields. The ERA5 monthly dataset is available in 8 averaged286

time steps, so we match to the average AIRS overpass times and separate into (D/N)287

sets over the 20 years, while MERRA2 monthly model fields are only available as one288

time step; included here for completeness we mention the NASA GISS surface temper-289

ature dataset, which like MERRA2 is only available as a monthly mean. This means four290

of the datasets : AIRS_RT (from AIRS L1C), AIRS L3 and CLIMCAPS L3, and ERA5291

are separable into D/N, while the other two (MERRA2 and GISS) are only available as292

a diurnal averaged value. We describe these datasets in more detail below.293

2.1 The AIRS instrument and L1C observational dataset294

The Atmospheric Infrared Sounder (AIRS) on board NASA’s polar orbiting EOS/Aqua295

platform has 2378 channels, covering the Thermal Infrared (TIR) spectral range (roughly296

649-1613 cm-1 ) and shortwave infrared (2181-2665 cm-1 ). The full widths at half max-297

imum satisfy ν/δν ∼ 1200. The (spectral dependent) noise is typically ≤ 0.2K. The orig-298

inal L1b radiance observations suffers from spectral gaps and noise contamination as de-299

tectors slowly fail. These limitations are addressed using a 2645 L1c channel observa-300

tional dataset, where spectral gaps and some of the noise “pops” are filled in using prin-301

cipal component reconstruction (Manning et al., 2020) and is the dataset used to sub-302

set radiances analyzed in this paper. However we note that the results described in this303

paper used only the actual observed radiances in pristine, stable channels described in304

(Strow et al., 2021) and none of the synthetic channels. The Aqua platform is a polar305

orbiting satellite with 1.30 am descending (night time over equator) and 1.30 pm ascend-306

ing (daytime over equator) tracks. Each orbit takes about 90 minutes, with the 16 passes307

yielding almost twice daily coverage of the entire planet. About ∼ 3 million AIRS spec-308

tral observations have been obtained daily since AIRS became operational in late Au-309

gust 2002. The instrument has provided observations almost continuously since then though310

there have been some shutdowns (each spanning a few days) such as during solar flare311

events.312

In this paper we use the re-calibrated 2645 channel L1C radiance observations (Strow313

& DeSouza-Machado, 2020) instead of the 2378 L1B radiance observations. 20 years (span-314

ning September 1, 2002-August 31, 2022) of AIRS L1C radiance observations are grid-315

ded into 4608 tiles covering the Earth : 72 longitude boxes which are all 5◦in width, and316

64 latitude boxes which are approximately 2.5◦in width at the tropics but wider at the317

poles to keep the number of observations per 16 day intervals (which is the repeat cy-318

cle of the AIRS orbit on the Aqua satellite) roughly the same. This way there are ∼ 12000319

observations per 16 days per tile, which are roughly equally divided between the ascend-320

ing/daytime (D) and descending/nightime (N) tracks. In this paper we discuss results321

for both the ascending and descending tracks using a retrieval based on the longwave (LW)322

and midwave (MW) regions of the spectrum (640-1620 cm−1 or 6-15 µm).323
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In this paper our trend retrievals use only the AIRS channels that are stable in time,324

as quantified in (Strow et al., 2021). For example the shortwave (SW) channels are drift-325

ing at a higher rate than the LW/MW channels, which can lead to incorrect surface tem-326

perature rates, and are avoided in this paper. Similarly there are are many channels in327

the LW and MW whose detectors are drifting in time, and which are also not used here.328

For example there are some higher wavenumber (shorter wavelength) channels past the329

ozone band which have a significant drift in time, possibly due to changes in the polar-330

ization of the scan mirror coating with time. Therefore compared to other AIRS oper-331

ational products used in this paper, our results use channels that are demonstrated to332

have high stability (Strow et al., 2021). We do note that some of the observed drifts in333

the AIRS channels stabilized after 6 years, so their impact is reduced when looking at334

20 year trends.335

2.2 Reanalysis Model fields336

The ERA5 fifth generation reanalysis product from the European Center for Medium337

Range Weather Forecasts is freely available on monthly timescales from the Copernicus338

Climate Data Store. This monthly dataset is output at 37 pressure levels at 0.25◦horizontal339

resolution (Hersbach et al., 2020), which is further subdivided into eight 3-hour averages340

per month (corresponding to 00,03,06,...21 UTC). For each month from September 2002-341

August 2022 we downloaded the surface temperature and pressure fields, as well as at-342

mospheric temperature, water vapor and ozone fields. These are then colocated to each343

tile center using 2D spatial interpolation, as well as time interpolated according to the344

average AIRS overpass time as a function of month. From the resulting monthly time-345

series of reanalysis model fields for each tile, we generated (a) thermodynamic trends for346

surface temperature, air temperature, water vapor and ozone model fields (b) a 20 year347

average thermodynamic profile in order to produce jacobians for the linear trend retrievals348

(c) by using the model fields as input to the clear sky SARTA radiative transfer code (Strow,349

Hannon, DeSouza-Machado, et al., 2003) a monthly time series of clear sky radiances for350

each tile was generated, from which we could compute radiance trends. The matching351

to ERA5 reanalysis was done for both the ascending and descending observations.352

The MERRA version 2 (MERRA2) re-analysis used in this paper is the second gen-353

eration (Gelaro & Coauthors, 2017) product from NASA’s Global Modeling and Assim-354

ilation Office. The monthly data we use is available on 42 pressure levels at a horizon-355

tal resolution of 0.5◦× 0.625◦, but only one monthly mean diurnally averaged output is356

available per month. Similar to the ERA5 output, we colocated the MERRA2 surface357

temperature, atmospheric temperature, water vapor and ozone fields to our tile centers358

for each month starting September 2002 in order to produce a time series of radiance and359

model output, from which radiance and thermodynamic trends could be computed for360

comparisons against other datasets in this study; similar to above we also generated a361

monthly time series of clear sky radiances for each tile, from which we could compute362

clear sky radiance trends based on MERRA2.363

The NASA Goddard Institute of Space Studies (GISS) v4 surface temperature data364

(2023, 2005; Lenssen et al., 2019) is a monthly dataset based primarily on near surface365

temperatures land stations, and data from ships and buoys. As with MERRA2 we ob-366

tained one monthly mean dataset per month, which we could not separate into descend-367

ing (N) or ascending (D) tracks.368

2.3 AIRS L3 Products369

NASA routinely produces two retrievals from the daily AIRS L1C observations, which370

are AIRS v7 (Susskind et al., 2014; Tian et al., 2020) and CLIMCAPS v2 (Smith & Bar-371

net, 2019, 2020). Both use the cloud clearing process but there are significant algorith-372

mic differences; in particular the AIRS v7 product is initialized by a neural net, while373
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CLIMCAPS uses MERRA2 for its initialization. The L2 products are then individually374

turned into L3 monthly products, for both the ascending (daytime) and descending (night-375

time) observational data. The timeseries of thermodynamic profiles were used as input376

to the clear sky SARTA RTA to generate radiances, after which radiance trends and ther-377

modynamic trends are also produced.378

2.4 Other L3 Products379

The Microwave Limb Sounder (MLS) monthly binned water vapor (H2O) mixing380

ratio dataset (Livesey et al., 2006; Lambert et al., 2007, 2021), which contains retrieved381

fields covering ±82◦ latitude, at a spatial resolution of 4◦× 5◦and useful vertical range382

between 316 and 0.00215 hPa was used in this paper to improve retrieval trends in the383

upper atmosphere.384

3 Filtering the Observational Data for clear scenes385

Here we discuss the “clear scene” selection from all the observed data stored for each386

of the 72 × 64 tiles. Ideally we would prefer to use a MODIS cloud fraction product (1387

km) colocated to the 15 km AIRS footprints, but this is presently unavailable. Our ear-388

lier work used an uniform clear flag over ocean (Strow et al., 2021) which will not work389

well over land because of surface inhomogeneity. In this section we discuss an alterna-390

tive clear filter based on the hottest 10 percent of AIRS observations that are present391

inside any 16 day tile, over any location.392

3.1 Observed BT1231 Distributions393

The radiances measured in thermal infrared window region (800-1000 cm−1 and394

1100-1250 cm−1) are dominated by the effects of the surface temperature, water vapor395

continuum absorption and cloud/aerosol effects. The effects of water vapor continuum396

absorption is largest in hot and humid tropical scenes (depressing the observations rel-397

ative to surface temperatures by about 5-6 K, which reduces to about 2 K at ± 50◦) and398

is almost negligible for cold, dry scenes (less than 1 K). Scattering and absorption by liq-399

uid and ice clouds also affects the window region (Deep Convective Clouds can depress400

the window channel observations by as much as 100 K relative to surface temperatures).401

For each tile, we use the 1231.3 cm−1 observation as our representative window chan-402

nel (AIRS L1C channel ID = 1520), as it is minimally impacted by weak water vapor403

lines. Changed to Brightness temperature (BT) the observation in this 1231.3 cm−1 chan-404

nel (BT1231) therefore serves as a measure for the cloudiness of an observation : if there405

are no or low or optically thin clouds, it will effectively measure the surface temperature,406

but as the clouds get thicker and higher, it will measure the cold cloud top temperatures.407

For any tile during any 16 day observation periods, we compute quantiles Q based on408

the observed BT1231 to design a filter that chooses between cloudy and partially clear409

scenes for every tile. We describe below the testing of the different BT1231 quantiles (where410

quantile Q0.XY will have a numerical value BT1231Q0.XY associated with it) to deter-411

mine which value best provides nominally clear scenes for every tile (over ocean and land)412

that agree with other nominally clear datasets we have used previously (Strow & DeSouza-413

Machado, 2020).414

Figure 1 shows all the BT1231 observations for a chosen 16 day timestep in the form415

of a zonally averaged histogram (normalized probability distribution functions (PDFs)),416

with latitude on the vertical axis and BT1231 on the horizontal axis. The colorbar is the417

PDF value, and we used observations spanning August 27, 2012 - September 11, 2012418

which is approximately half way through the 20 year AIRS mission dataset used in this419

paper. The curves show the zonally averaged BT1231 values of the minimum (Q0.00)420

in blue, mean (thick red), median (Q0.50 in orange), maximum (Q1.00 in green) and Q0.90421
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(thick black curve). We did not show other warmer quantiles such as Q0.80 Q0.95 and422

Q0.97 since they are only slightly offset, either to the left (cooler) or right (warmer) as423

appropriate, relative to the Q0.90 curve. The exception is that at the equator, Q0.80 still424

has the remnants of lower temperatures due to clouds and is slightly cooler, as similarly425

seen in the behavior of the mean and median curves. The distributions are skewed to426

the left (negative skewness), as confirmed by the mean being less than the median. The427

220 K horoizontal axis cutoff means we do not see the very cold (190 K) observations428

over the winter Antarctic.429

The figure shows the expected qualitative features, for example (1) the tropical PDFs430

peak at around 295 K, but show some warmer observations, as well much colder obser-431

vations (below 230 K) corresponding to Deep Convective Clouds (DCC); this gives a dy-432

namic range of almost 100 K at the tropics (2) the BT1231 observed over the Southern433

Polar (polar winter) regions are much colder than the BT1231 observed over the North-434

ern Polar (polar summer) regions and (3) the reddish peaks in the 30◦N - 40◦N are a com-435

bination of the marine boundary layer (MBL) clouds and warmer summer land temper-436

atures. Figure 1 shows on average the cloud effect at the tropics is an additional mod-437

est 20 K (difference between Q0.90 and Q0.50) compared to the 100 K dynamic range.438

This is because the cloud fractions and cloud decks in the individual observations have439

effectively more clouds (with larger cloud fraction in the FOV) lower in the atmosphere440

than higher up; the net effect is that in the window region the atmosphere is on aver-441

age radiating from the lower (warmer) altitudes, and so spectra whose BT1231 values442

are larger than BT1231Q0.80, see much of the surface emission as well.443

444

We now use the above plots to select “almost clear” scenes. For any one tile, we de-445

fine set Ψ0.XY to have all observations i whose BT1231 lies between quantiles Q0.XY446

and Q1.00, {i | BT1231Q0.XY ≤ BT1231(i) ≤ BT1231Q1.00}. In what follows Q0.XY447

is the radiances averaged over all the observations i which are in the set Ψ0.XY , namely448

rQ0.XY (ν) =
1

N0.XY

∑
i∈Ψ0.XY

ri(ν) (1)

where ri(ν) are the N0.XY individual observations in set Ψ0.XY . In this section we only449

use the ν = 1231 cm−1 channel, but in later sections we easily form averages for all 2645450

channels, at any 16 day time step for any tile.451

We tested different quantile sets Ψ0.XY to see which one can reliably be considered452

to provide a nominally “cloud free” global observational dataset, and chose the Q0.90 av-453

erage (ie defined as averaged over the Ψ0.90 set, which spans Q0.90 to Q1.00) as the one454

to use for the rest of this paper, unless explicitly stated otherwise. The tests primarily455

involved comparisons to scenes produced by the uniform/clear sky filter described in (Strow456

& DeSouza-Machado, 2020) for the same August 27, 2012 - September 11, 2012 sixteen457

day timespan. This latter filter selects clear scenes by both testing for uniformity (to within458

0.5 K) across a 3 × 3 grouping of AIRS scenes and also using a criteria that the observed459

window channel observations should be within ± 4 K of clear-sky simulations using ther-460

modynamic parameters supplied by reanalysis models. The results are shown in the left461

hand plot of Figure 2, plotted on a 1◦× 1◦grid. We note in this plot the uniform/clear462

scenes that are plotted are limited to those over ocean, and for solar zenith less than 90463

◦(daytime), which automatically filtered out many of the views over the (wintertime) South-464

ern Polar region. Immediately apparent are the gaps produced by the uniform/clear fil-465

ter e.g. in the Tropical West Pacific or off the western coasts of continents where there466

are clouds. The gaps can be changed by e.g. changing the 4K threshold to allow more467

or fewer scenes through the filter.468
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Figure 1. Zonally averaged BT1231 normalized histograms (probability distribution func-
tions (pdf)) as a function of latitude and temperature bin, for the 16 day timespan between
2012/08/27 - 2012/09/11. The vertical axis is in degrees Latitude and the horizontal axis units
are in Kelvin, while the colorbar units for the pdfs are in normalized counts per Kelvin. We also
plot quantile curves Q0.XY which stand for the actual numerical value of the BT1231 quantile,
as explained in the text. The thick black curve is the Q0.90 quantile used in this paper, and
is very close to the maximum Q1.00 quantile. For clarity we have not shown other “warmer”
quantiles such as Q0.80,Q0.95 since they are offset very close to the left and right of Q0.90 re-
spectively. The 210 K cutoff means we do not show the tail of the distribution of the observations
over the winter polar regions, or the extremely cold DCC in the tropics.
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Figure 2. Clear scenes for the same 2012/08/27 - 2012/09/11 timespan selected by (left) an
uniform/clear sky filter and (center) the Q0.90 BT1231 average described in this paper. The
colorbars for the left and center plots are in Kelvin. The right hand plot shows the mean (over
ocean) observed BT1231 (vertical axis, in Kelvin) as a function of latitude, for the two selections;
the difference is about 0 K ± 1 K in most regions except in the southern midlatitudes where the
Q0.90 average produced scenes that were about 1 K cooler on average. Note that in this and
subsequent figures, Q0.90 is the average of all data points values between Q0.90 (shown in Figure
1) and the maximum, using observed BT1231 as the discriminator as explained in the text.

The center plot shows for all tiles, the daytime scenes selected by the Q0.90 filter469

for the same time period, on the same 1◦× 1◦grid. Compared to the left hand plot, the470

spatial coverage is almost complete, as the Q0.90 average always has the hottest 10% of471

the observations. At this 1◦resolution, used for comparison with the uniform/clear grid472

filter described in the previous paragraph, gaps are seen in regions where for example473

the local topography means observations over mountains would be colder than the sur-474

rounding coastal or plain regions. This is not a concern since zooming back out to the475

coarser 3◦× 5◦tile resolution, will include Q0.90 observations for the quantile and trend-476

ing analysis.477

To compare the mean observations we remove the over-land and over-polar region478

observations from the center plot. The right hand plot shows the mean observed BT1231479

from the 1◦× 1◦grid from the uniform/clear sky filter as a function of latitude, compared480

to the 1◦× 1◦grid from the Q0.90 scenes. The difference between the uniform/clear ver-481

sus Q0.90 average is within about 0.25 K ± 1 K across the southern tropics to the north-482

ern midlatitudes, though the bias rises to about 1 K by about -50◦S. We consider this483

an acceptable difference, as we could tune the thresholds for the uniform/clear filter to484

e.g. change the areal coverage and/or number of clear scenes and hence comparisons to485

the Q0.90 scenes.486

487

The results presented in this section have been checked for robustness, using other488

16 day intervals spanning the four seasons. We conclude that for any 16 day timestep489

the radiances used in the Q0.90 average (a) produces almost complete spatial coverage490

of the Earth, (b) selects scenes whose average BT1231 is very close to the average BT1231491

from scenes selected using an uniform/clear filter (c) trends from that quantile typically492

differ by less than ± 0.002 K yr−1 from the other quantiles and (d) this selection pro-493

duces spectral trends which compare well against those obtained from the quality assured494

binned AIRS CCR data record (Manning, 2022), and reinforces the notion that our quan-495

tile based selection is selecting nominally clear scenes. Together these imply the Q0.90496

average is an acceptable proxy for “clear scenes”. For the remainder of the paper we there-497

fore consider Q0.90 as consisting of nominally clear observations whose BT1231 lies be-498

tween the 90th quantile and hottest observation. Our retrievals using this Q0.90 → Q1.00499
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averaged observational dataset (shortened to Q0.90) is referred to as AIRS_RT in what500

follows.501

3.2 Observed trends from the Q0.90 Quantiles502

Having selected the Q0.90 observations, for each tile the average radiance per 16503

day interval is computed. With two sixteen day periods not available (Aqua platform504

or AIRS shutdowns during e.g. solar flare events) this gives a total of 457 time steps over505

20 years. Anomalies are formed from this time series, and then de-seasonalized to give506

the spectral radiance trends and error estimates (Strow & DeSouza-Machado, 2020) us-507

ing Matlab robustfit :508

r16 days
observations(t) ∼ rfit(t) = ro + a1t+

4∑
i=1

cisin(n2πt+ ϕi) (2)

with a1 and its associated uncertainty, both converted to brightness temperature (BT),509

being the trends in K yr−1. Using sub-harmonics in the fit did not produce any notice-510

able change in the AIRS_RT retrievals (described below).511

The left panel of Figure 3 shows the descending orbit (nightime) 20 year (Septem-512

ber 2002- August 2022) global averaged spectral observations for the five quantiles men-513

tioned above. We note the spectra in most of the plots in this section are weighted by514

the cosine(latitude) of the tiles, unless otherwise stated. In addition we only show the515

640-1640 cm−1 region, and ignore the shortwave 2050-2750 cm−1 region since the AIRS516

SW channels are drifting relative to the LW (Strow & DeSouza-Machado, 2020). Spec-517

tral averages constructed from Figure 1 would have this same behavior, namely that in518

the window region the mean spectrum of observations populating the warmer quantiles519

(Q0.80, Q0.90, Q0.95, Q0.97) as defined in Equation 1 are on the order of a Kelvin apart,520

and have about half/quarter that difference in the optically thicker regions dominated521

by H2O and/or CO2 absorption respectively.522

The right hand panel of Figure 3 shows (top) the trends and (bottom) the 2σ trend523

uncertainties for these quantiles, in K yr−1. We emphasize that the top right panel shows524

that the spectral trends for the quantiles lie almost on top of each other; the difference525

between the Q0.50 and other trends is at most about +0.003 K yr−1 (out of a 0.02 K526

yr−1 signal) in the window region (and about +0.0045 K yr−1 in the troposphere tem-527

perature sounding channels), or less than 10%. Similarly the largest trend uncertainty528

in the bottom panel is for Q0.50. This implies that clouds effects in the infrared produce529

the largest variability (blue curve). Globally on average for the infrared the spectral trends530

for all quantiles, ranging from clearest (Q0.97) to allsky (Q0.50 very similar, but differ-531

ences are seen on regional scales. This implies the +0.022 K yr−1 window region trends532

are dominated by surface temperatures changes and to a lesser extent by water vapor533

changes.”534

X. Huang et al. (2023); Raghuraman et al. (2023) and our work all show, either in535

radiance or OLR space, (a) the increased observed radiance in the window channels, due536

to surface temperature increases (b) the ≃ -0.06 K yr−1 decrease in BT in the 700-750537

cm−1 troposphere sounding region, which is due to a combination of the CO2 amounts/optical538

depth rises leading to atmospheric emission from higher altitudes/lower temperatures539

together with atmospheric temperature increases (shown later in this paper to be between540

+0.01 to +0.02 K yr−1); (c) increases in the 1350-1640 cm−1 free troposphere water va-541

por sounding region and (d) the 1280-1340 cm−1 decreases are due to CH4 increases.542

Also of interest are the trends in the stratosphere (650-700 cm−1) changes which543

consists of a stratospheric cooling signal (negative) and emission higher up due to increased544

CO2; combining to give a net zero effect over 20 years, also seen in (Raghuraman et al.,545

2023). The H2O signal is evident in the 1400-1625 cm−1 region, and is only slightly pos-546

itive; in other words, increasing temperatures have led to increased atmospheric amounts547
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Figure 3. 20 year trends from different observation quantiles. The left hand panel shows the
mean globally averaged BT observations (in Kelvin) from 20 years of AIRS observations, for
quantiles Q0.50,0.80,0.90,0.95,0.97 as described in the text. The right hand panel shows (top) the
globally averaged trends for those different quantiles and (bottom) the spectral uncertainty in the
trends (both in K yr−1). The nightime (descending) trends are shown in these plots.

of H2O, and the water vapor feedback has reduced the amount of outgoing flux in that548

region. By extension, this can also be expected to have happened in Far Infrared (10-549

650 cm−1) spectral regions affected by water vapor, but cannot be wholly confirmed as550

current sounders do not make direct measurements in that region. In the near future it551

is anticipated the Far Infrared Outgoing Radiation Understanding and Monitoring (FO-552

RUM) mission (Palchetti et al., 2020) will provide observations to fill in this important553

observation gap. In closing this section we point out a comparison of spectral trends be-554

tween AIRS_RT observations and reanalysis/L3 simulations is presented and discussed555

in Figures B1 and B2 of Appendix B.556

557

4 Testing the variability of representative points from reanalysis558

Each sixteen day 3◦× 5◦tile contains ∼ 12000 observations, which means for each559

tile about 600 daytime and 600 nightime observations are averaged to produce the Q0.90560

observational dataset per timestep. Conversely there are typically only ∼ 240 monthly561

ERA5 0.25◦points per 3◦× 5◦tile; for 1◦resolution AIRS L3 and CLIMCAPS L3 there562

are even fewer (15) points per tile. This low number of points means we chose a simple563

solution of using the grid cell closest to the center of each 3◦× 5◦tile for building the re-564

analysis and L3 geophysical time series. This choice is validated below using the follow-565

ing test to see for example how surface temperature trends would be impacted as we changed566

the representative point for the ERA5 model fields.567

For the descending overpass we built complete sets of approximately 240 ERA5 points568

per tile per month; at 0.25◦resolution one of these is almost certainly at the tile center.569

From these monthly sets, we could either directly read the tile center temperature (our570

default), or compute the average surface temperature per tile, or compute the average571

of the hottest 10% surface temperatures per tile. This was done for all 20 years (240 monthly572

timesteps) after which the three timeseries were trended. Over ocean the differences be-573

tween all three sets of data was typically -0.001 ± 0.005 K yr−1, while over land the dif-574

ferences were about 0.001 ± 0.01 K yr−1. This is to be compared to mean trends of about575

0.014 ± 0.02 K yr−1 over ocean and 0.025 ± 0.04 K yr−1 over land : the spread of the576

ocean and land ERA5 surface temperature trends for the three methods, is much smaller577
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than the mean trends. Given that there were far fewer re-analysis points in a grid box578

than tiled Q0.90 observations, coupled with the fact that choosing the 10% warmest pro-579

files would provide an even smaller sample, we chose to use the tile center to be the rep-580

resentative point to co-locate the model fields.581

5 Geophysical Trend Retrieval outline582

5.1 Setting up the Retrieval Problem583

The observed clear sky spectral brightness temperature for a tile at any time t can584

be modeled as585

BT (ν, t) = f(X(t), ϵ(ν, t), θ(t)) + NeDTretrieval(ν) (3)

where the state vector X(t) has the following five geophysical state parameters : (1) sur-586

face temperature (ST), (2) atmospheric temperature profile T(z), (3) water vapor pro-587

file WV(z), (4) ozone profile O3(z) (5) greenhouse gas forcings (GHG) due to CO2, CH4588

and N2O changing as a function of time t and f(X(t), ϵ, θ, ν) is the clear sky radiative589

transfer equation for channel center frequency ν. The spectral noise NeDTretrieval(ν))590

varies with scene temperatures and on particulars of the retrieval algorithm. For single591

footprint retrievals using daily observations, the spectral noise NeDTretrieval(ν)) in a592

typical tropical “clear scene” is about 0.1 K in window region, increasing to about 1 K593

in the 15 µm temperature sounding channels and about 0.2 K in the 6.7 µm water va-594

por sounding region, and is usually larger for operational L2 retrievals which use cloud595

clearing. We parametrize the GHGs using single numbers (such as ppm(t) for the CO2596

column), and include the AIRS orbit and viewing angle geometry θ and the surface emis-597

sivity ϵ(ν), while we omit forward model and spectroscopy errors. We ignore cloud scat-598

tering as well as the spatial variation of the state parameters, emissivity and scan an-599

gle geometry within a tile. Linearizing the above equation about the time averaged pro-600

file, the relationship between the observed spectral trends and desired thermodynamic601

trends is given by602

dBT (ν)

dt
=

∂f

∂X

d

dt
X(t) = K(ν)

d

dt
X(t) +

���������:0

Kemissivity(ν)
d

dt
ϵ(t) → K(ν)

d

dt
X(t) (4)

where the matrix K(ν) is the thermodynamic jacobian (surface temperature, air603

temperature and trace gases) and we ignore any orbit drifts (changes to θ), instrument604

changes (changes to NeDTretrieval(ν)) and surface emissivity (ϵ(ν)); the last assump-605

tion is investigated in a later section. The overbars on parameters X denotes this is a606

time average (linear trend) that we are working with, and we have converted from ra-607

diances in Equation 2 to brightness temperatures in Equations 3 and 4.608

5.2 Jacobian calculations609

For a typical clear sky tropical sky atmosphere, the 800 - 1200 cm−1 window re-610

gion has surface temperature (SKT) jacobians which are about +0.5 to +0.75 K per de-611

gree SKT change and -0.75 to -0.25 K per 10% change in column water vapor. The spec-612

tral variability in these window region jacobians is primarily due to reducing water con-613

tinuum absorption as you move from the 800 cm−1 end to the 1200 cm−1; consequently614

the surface temperature jacobians becomes closer to unity and the column water jaco-615

bians become closer to zero as water vapor amount decreases (drier atmospheres in the616

mid-latitudes and polar regions). The hyperspectral channels used in this work assist in617

partitioning these two competing changes (though not perfectly), which we validate against618

other datasets in this study. As seen in Figure B2 typical magnitudes of the spectral trends619

on the left hand side of Equation 4 are less than about 0.1 K per year. Equation 4 is in620

the usual inversion form δy = Kδx, and the Optimal Estimation Rodgers (2000) so-621

lution used to solve the anomaly time series in (Strow et al., 2021) is also used here. The622
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noise term NeDTretrieval(ν) for the trend retrievals is now the uncertainty that natu-623

rally arises from the inter-annual variability when doing the linear trend fitting shown624

in Equation 2. Examples of typical noise values are shown in the bottom right hand panel625

of Figure 3.626

ERA5 monthly model fields at tile centers, together with time varying concentra-627

tions of GHG such as CO2, were averaged over 20 years so jacobians could be computed.628

The GHG concentrations were a latitude dependent increase of about 2.2 ppm yr−1 for629

CO2 derived from the CarbonTracker (Peters et al., 2007) (CarbonTracker CT-NRT.v2023-630

4, http://carbontracker.noaa.gov) data at 500 mb. Our pseudo-monochromatic line by631

line code kCARTA (De Souza-Machado et al., 2018, 2020) was used with these averaged632

profiles to produce accurate analytic jacobians. The HITRAN 2020 line parameter database633

(Gordon & Rothman, 2022), together with MT-CKD 3.2 and CO2,CH4 line mixing from634

the LBLRTM suite of models (Clough et al., 2005) were used in the kCARTA optical depth635

database (De Souza-Machado et al., 2018). A 12 month geographical land-varying spec-636

tral emissivity database spanning one year from (Zhou et al., 2011) was used, while ocean637

emissivity came from (Masuda et al., 1988). The atmospheric temperature, water va-638

por and ozone profile jacobians, and the surface temperature and column jacobians for639

the GHG gases such as CO2 and CH4 and N2O, were then convolved using the best es-640

timate AIRS Spectral Response Functions (Strow, Hannon, Weiler, et al., 2003).641

Tests done for this paper, together with the results in (Strow et al., 2021), estab-642

lished that jacobians derived from MERRA2 versus ERA5 produced no significant dif-643

ferences in the context of retrieved trends or anomalies done for this paper, as the un-644

certainty in linear trends due to inter-annual variability dominates over any uncertainty645

(or differences between) model fields.646

5.3 Optimal Estimation Retrieval : State vector, covariance matrices647

and a-priori648

Using monthly ERA5 model fields averaged over 20 years, for each of the 64 × 72649

tiles we computed analytic jacobians for the following (vector) atmospheric thermody-650

namic variables [fractional water vapor, fractional ozone and temperature] together with651

(scalar) surface temperature. We retrieved fractional gas concentration trends dfracX/dt =652

1/Xavg(z)dXavg(z)/dt to keep all values in the state vector at about the same magni-653

tude. A single iteration Optimal Estimation retrieval (Rodgers, 2000) is used to simul-654

taneously solve for the geophysical parameter trends. As in Strow & DeSouza-Machado655

(2020) the geophysical covariance uncertainty matrices are a combination of Tikonov and656

covariance regularization. The uncertainties for the covariance matrices were typically657

[0.1,0.25,0.45] K yr−1 for the surface/tropospheric/stratospheric temperature trends, and658

[0.04/0.02] yr−1 for the fractional tropospheric/stratospheric water vapor trends. Tikonov659

L1 regularization Rodgers (2000) also included, with the scalar factor multiplying this660

regularization corresponding to about 1/10 the covariance uncertainties. The spectral661

uncertainties used in the retrievals come from the above mentioned trend uncertainties.662

For completeness we note that a sequential trend retrieval produces very similar geophys-663

ical trends.664

Here we emphasize four unique points about our geophysical trend retrievals, which665

distinguishes this approach from trends derived from other datasets. Firstly the a-priori666

trend state vector is zero (dST/dt = dT(z)/dt = dQ(z)/dt = 0) for all geophysical pa-667

rameters, except for water vapor where we enforced constant (or slightly increasing) rel-668

ative humidity as described below. This ensures traceability of our retrieval is straight-669

forward especially wherever the AIRS instrument has sensitivity. For example the 300670

- 800 mb water vapor trend retrievals will be based on the observed data only, thereby671

insulating us from any possible a-priori information from e.g. climatology or reanaly-672
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sis, unlike the operational AIRS V7 or CLIMCAPS retrievals which use first guesses based673

on neural net and MERRA2 respectively.674

Secondly the 15 µm region of Figure B2 shows a large spectral overlap signal (-0.06675

K yr−1) from the increasing CO2, which is much larger than the expected atmospheric676

temperature trend (0.01 - 0.02 K yr−1). These correlations makes it difficult to jointly677

retrieve both temperatures changes and changes in well mixed GHGs such as CO2. We678

chose to focus on retrieving temperature changes only, by spectrally removing the effects679

of changing CO2, CH4 and N2O GHG concentrations. This was done by using the GHG680

trends estimated from NOAA ESRL CarbonTracker data multiplied by the appropriate681

GHG gas column jacobian (CO2,N2O and CH4 and CFC11,CFC12) computed as described682

above using the averaged over 20 years ERA5 monthly profile for each tile.683

Thirdly instead of using all 100 layers described in the AIRS forward model (Strow,684

Hannon, DeSouza-Machado, et al., 2003), we combine pairs of layers for a 50 atmospheric685

layer retrieval, as the AIRS radiances contain far fewer than 100 pieces of information686

(see e.g. (Maddy & Barnet, 2008; De Souza-Machado et al., 2018)).687

Fourthly, modern hyperspectral infrared sounders have highest sensitivity to tem-688

perature and water vapor in the mid-tropopause; see for example the averaging kernels689

in (Irion et al., 2018). Using a zero fractional WV trends a-priori at all levels, it was fairly690

straightforward to obtain fractional WV(z) trends close to those from the reanalysis datasets691

in the 300-850 mb region. In order to improve our results in the lowest layers, we enforced692

a constant relative humidity approximation, which is a well-known, expected behavior693

under global climate change (Soden & Held, 2006; Sherwood et al., 2010). This was done694

by ignoring the contribution due to water vapor changes in the observed BT1231 trend,695

and using it as an approximation for air temperature trend over ocean; this allows us to696

compute an estimate of how the water vapor would need to change697

RH(T ) =
e

esat(T )
=⇒ δ(RH) =

1

esat(T )
δe− e

e2sat(T )
δesat(T ) =

1

esat(T )
δe− e

esat(T )

Lv

Rv

1

T 2
δT

(5)
where e, esat(T ) are the vapor pressures and we used esat(T ) = es0e

Lv
Rv

( 1
To

− 1
T ) (where698

Lv, Rv are latent heat of vaporization and gas constant respectively) to go from the ex-699

pression in the center to the expression on the right. If we expect the change in RH to700

be zero then δe
e = Lv

Rv

δT
T 2 , where we can use δT/δt ∼ d/dtBT1231. to approximate the701

a-priori fractional vapor pressure rates (or a-priori fractional water vapor rates) between702

surface and 850 mb, smoothly tailing to 0 in the upper atmosphere. Subsection 6.2 has703

a similar discussion on a proposed method to alleviate the lack of sensitivity to upper704

atmosphere water vapor. Our default results in this paper are from using the MLS a-705

priori, unless otherwise stated.706

5.4 Testing on synthetic trend spectra made from ERA5 Reanalysis monthly707

fields708

We tested the retrieval code by using it on the simulated nighttime only ERA5 spec-709

tral trends, and compared to geophysical trends computed directly from the ERA5 re-710

analysis. Spot checks of the spatial correlations of ERA5 fractional water vapor and tem-711

perature trends versus the trends retrieved from synthetic spectra/our retrieval algorithm,712

peaked at 500 mb with correlations of about 0.9, compared to 800 mb correlations of 0.80713

and 0.55 for temperature and fractional water vapor trends respectively and 200 mb cor-714

relations of 0.89 and 0.69 for dT/dt, dWVfrac/dt. This is to be expected since a com-715

putation of the water vapor averaging kernels for infrared instruments for arbitrary at-716

mospheric profiles typically shows they peak in the 300 mb - 850 mb range and decrease717

rapidly away from those regions; conversely the temperature averaging kernels stay rel-718

atively uniform through the free troposphere and above, though they also decrease close719

to the surface; see for example (Irion et al., 2018; Smith & Barnet, 2020; Wu et al., 2023).720
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Figure 4. Comparing geophysical trends derived directly from ERA5 monthly night-
time fields (top) vs from the AIRS_RT retrieval applied to the ERA5 reconstructed spectral
trends(bottom). Horizontal axis are all in latitude (deg) while vertical axis is in pressure (mb).
Note the vertical axis is logarithmic for the temperature trends and linear for the water vapor
trends. The colorbar for the left panels is K yr−1 while the colorbar for the right panels is yr−1

(as fractional water vapor has no units).

Figure 4 shows a sample set of results using nightime ERA5 model output converted721

to spectral trends as described above. The top panels (A) are always the atmospheric722

trends computed directly from the monthly ERA5 model fields, while the bottom pan-723

els (B) are the atmospheric trends retrieved from the converted ERA5 spectral bright-724

ness temperature trends. The left most panel is the atmospheric temperature trend com-725

parison (both in K yr−1) while the rightmost panel is the fractional atmospheric water726

vapor trend comparison (in yr−1).727

728

It is evident from the figure that the tropospheric trends in the tropical and mid-729

latitude regions are quite similar, and there are differences in the polar regions and strato-730

spheric regions where the AIRS instrument has reduced sensitivity. The atmospheric and731

surface trends are shown in Table 1, divided into “all” (which is the entire ± 90 latitude732

range and 0-1000 mb vertical range) and “T/M” which is the tropical/midlatitude region,733

which is further reduced to 050-900 mb for air temperature and 300-800 mb for water734

vapor. “ERA5 direct” are trends computed directly from the geophysical fields, while “ERA5735

spectral” are retrieved from the spectral trends.736

5.5 Surface emissivity changes737

Equation 3 explicitly includes the surface emissivity in the equation of radiative738

transfer; however Equation 4 assumes this is unchanging. Here we rewrite Equation 4739

as740

dBT (ν)

dt
−Kemissivity(ν)

d

dt
ϵ(t) → dBT ′(ν)

dt
= K(ν)

d

dt
X(t) (6)

Ocean emissivity has a dependence on windspeed (Masuda et al., 1988). (Lin &741

Oey, 2020) and other literature suggest wind speed increases of +2.5 cm s−1 yr−1 have742

occured between 1993-2015 in the tropical Pacific, and smaller (or close to zero) values743

elsewhere. The monthly ERA5 u10,v10 10 m speeds for the 20 year time period in this744

paper also showed the maximum absolute trend was 0.09 m/s/year (over the Southern745

Ocean) while the global ocean mean and standard deviation were 0.006 ± 0.022 m s−1
746
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dTz/dt dTz/dt dSKT/dt dSKT/dt dfracWV/dt dfracWV/dt
K yr−1 K yr−1 K yr−1 K yr−1 yr−1 yr−1

A T/M A T/M A T/M
SFC-TOA 050-900 mb GND-TOA 300-800 mb

ERA5 direct 0.010 ± 0.038 0.029 ± 0.013 0.020 ± 0.035 0.018 ± 0.032 0.003 ± 0.002 0.002 ± 0.001
ERA5 spectral 0.004 ± 0.033 0.027 ± 0.012 0.019 ± 0.033 0.016 ± 0.029 0.001 ± 0.001 0.002 ± 0.001

Table 1. Cosine weighted air temperature and skin temperature trends (in K yr−1), and frac-
tional water vapor trends (in yr−1), together with uncertainties. The “ERA5 direct” are directly
from the ERA5 geophysical trends, while “ERA5 spectral” are trends retrieved from the con-
verted ERA5 spectral trends.

yr−1; The emissivity changes over ocean using a 0.025 m s−1 wind speed change are on747

average on the order of 1×10−6 per year in the thermal infrared window (or about 0.0003748

K yr−1 change in the window region); assuming the optical properties of water do not749

substantially change with the ∼ 0.02 K increases seen in all the datasets considered in750

this paper, these very small emissivity changes due to windspeed changes are of no con-751

sequence.752

We also estimate how the changing ocean temperatures would change the emissiv-753

ity. Assuming no atmosphere, the radiance measured at the TOA is r0(ν) = ϵ(ν)B(ν, T0)754

where T0 is the temperature, ϵ is the emissivity and B(ν, T0) is the Planck function. If755

the temperature is perturbed by δT then the radiances changes by an amount δr(ν, T0) =756

ϵ(ν)dB(ν,T0)
dT δT+B(ν, T0)

dϵ(ν,T0)
dT δT . The derivative of the Planck function is easily com-757

puted analytically. An estimate of the ocean emissivity change with temperature is ∼758

2 ×10−4 per Kelvin, using the information in (Newman et al., 2005; Nalli et al., 2022).759

Inserting these numbers yields a BT change of ∼ 1.5 ×10−3 K due to the change in emis-760

sivity, which is much smaller than the assumed 0.2 K ocean temperature change.761

Land emissivity changes were estimated as follows. A global monthly mean emis-762

sivity database, the Combined ASTER and MODIS Emissivity over Land (CAMEL v003)763

has recently been released (Borbas et al., 2018). We matched the tile centers to the database764

for the 20 × 12 months spanning our 2002/09 - 2022/08 time period, and computed the765

emissivity trends over land; the results (not shown here) were on the order of −1×10−4
766

and +3×10−4 in the 800-960 cm−1 and 1100-1250 cm−1 regions respectively, averaged767

over the land observations. For each tile the Kemissivity(ν)
d
dtϵ(t) term was estimated by768

running SARTA with the default emissivity, then differencing with the SARTA output769

obtained when the emissivity trends were added on. Averaged over the planet, the spec-770

tral changes arising from these emissivity changes were much smaller than the spectral771

trends seen in Figure 3, about -0.001 K yr−1 between 800-960 cm−1 and about +0.002772

K yr−1 on the 1100-1250 cm−1 region (which we do not use in our retrieval, since many773

of the channels are synthetic and the real channels are drifting Strow et al. (2021)). The774

land only results were roughly three times these magnitudes. Using these emissivity ja-775

cobians on the left hand side of Equation 6 and running the retrieval on the adjusted spec-776

tral trends over land, resulted in about at most 0.01 K increases to the zonally averaged777

surface temperature changes over land; zonally averaged these largest differences were778

at about 40◦N to 60◦N and -25◦S to +15◦N, due to emissivity decreases; the 20◦N to779

+35◦N region which included the Sahara and swathes of Asia, had emissivity increases780

but the averaged-over-land temperature decreases were small, as there were offsetting781

emissivity increases in other land areas at the same latitudes. We did not pursue the im-782

pact of these emissivity changes further as the CAMEL database is affected by the sta-783
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bility of the MODIS data, and our results below will not include accounting for changes784

in land emissivity.785

6 Results786

The trends retrieved in the previous section using simulated radiance trends show787

that the retrieval package is working as expected. Here we apply our retrieval to observed788

AIRS L1C radiance trends and compare the retrieved AIRS_RT geophysical trends to789

those computed directly from the ERA5/MERRA2 model fields and AIRS L3/CLIMCAPS790

L3 products. We will have an expectation that since the simulated radiance trends had791

no noise added to them, the uncertainty in the spectral rates was lower than the actual792

observed spectral uncertainty; this will lead to larger uncertainties and/or errors in our793

retrieval using observed radiance trends.794

Most of the comparisons against reanalysis model fields and L3 products will be795

made in the context of averages over the descending/night (N) and ascending/day (D)796

observations since the MERRA2 (and GISS) datasets are only available as a D/average;797

the reader is referred to the Appendix where we show a few of the D-N differences. The798

results are shown in the order of surface/column trends (surface temperature and col-799

umn water), followed by zonal averages of the atmospheric temperature and fractional800

water vapor trends. We also refer the reader to Appendix B which presents an interpre-801

tation of these geophysical trend comparisons, using trends in radiance spectral space.802

6.1 Skin Temperature trends803

There are typically multiple (window) channels that are sensitive to a surface pres-804

sure, meaning the radiances typically have more information content for the surface tem-805

perature (assuming the surface emissivity is well known and there are no clouds) rather806

than for example air temperature. Figure 5 shows the diurnally averaged day/night (D/N)807

surface temperature trends from 6 datasets : AIRS_RT observations, AIRS L3, CLIM-808

CAPS L3, ERA5, MERRA2 and NASA GISTEMP. AIRS_RT shows an overall global809

warming of +0.021 K yr−1; the cooling trends include the tropical eastern Pacific and810

south of Greenland and tropical northern Atlantic. The rest of the datasets also show811

similar patterns of cooling in the N. Atlantic Ocean, warming over the Arctic and some812

degree of cooling over the Antarctic Ice Shelf/Southern Ocean as does AIRS_RT. The813

AIRS v7 L3 shows some cooling over Central Africa and the Amazon not seen in the AIRS_RT814

trends, where one could expect Deep Convective Clouds and possible cloud clearing is-815

sues. We also point out the AIRS L3 product has many missing values off the western816

coasts of N. and S. America, due to cloud clearing issues. MERRA2 shows significant817

cooling trends over C. Africa and near the Antarctic Ice Shelf. Of note here is that al-818

though CLIMCAPS uses MERRA2 as its first guess, their surface temperature trends819

are not similar, especially around the Antarctic where MERRA2 shows strong cooling820

trends.Over the ocean GISS shows similar trends to what AIRS_RT trends show. An821

earlier study of Land Surface Temperatures between 2003-2017 using MODIS (Prakash822

& Norouzi, 2020) shows very similar large daytime cooling trends over parts of central823

and western Indian subcontinent that we see from our retrieval as well as directly from824

the BT1231 channel trends; for tiles that straddle both ocean and land the quantile method825

picks up the hottest observations, which especially during summer are mostly over the826

Indian subcontinent. For these reasons we also have confidence in our retrieved cooling827

trends over for example daytime continental Central/Eastern Africa, which are differ-828

ent from the other four day/night datasets.829

830
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Figure 5. Surface temperature trends dSKT/dt averaged over day and night for AIRS_RT,
and from separately fitting the monthly data in ERA5, MERRA2, AIRS L3, CLIMCAPS L3 and
GISS. The horizontal and vertical axis are longitude and latitude. Colorbar units are in K yr−1.

The spatial correlations between AIRS_RT retrieved rates and the various datasets831

is shown in Table 2 while the cosine weighted skin temperature trends are shown in Ta-832

ble 3. By adding in the uncertainty in the trends for any of the individual models or datasets,833

and then doing the cosine weighting, we estimate uncertainties of about ± 0.015 K yr−1
834

for “ALL”; the uncertainties for “OCEAN” are typically about 2/3 of that value, and for835

“LAND” are about 4/3 of that value. We emphasize here that we use center point re-836

analysis and L3 model data when computing their trends for any grid box, while the AIRS_RT837

uses the hottest 10% of “clear” observations; (Strow & DeSouza-Machado, 2020) showed838

that the tropical retrieved surface temperature trends and anomalies over ocean corre-839

lated very well with those from the ERA-I Sea Surface Temperature dataset.840

ERA5 MERRA2 AIRSL3 CLIMCAPSL3 GISS

0.72 0.59 0.80 0.89 0.77

Table 2. Correlations of average (nighttime,daytime) retrieved skin temperature trends from
AIRS_RT, versus trends from models/products

A notable outlier in this group is the MERRA2 trends, especially over land and841

the Southern Ocean which are noticeably negative (blue) compared to the other datasets;842

the agreement with tropical and mid-latitude oceans is much better. As noted earlier,843

the MERRA2 monthly trends come from a combination day/night dataset that was down-844

loaded, which as seen in Figure 5 consists of trends that are both positive and negative,845
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SKT trend K yr−1 AIRS_RT AIRS CLIMCAPS ERA5 MERRA2 GISS

ALL 0.020 0.017 0.021 0.023 0.011 0.021
TROPICS 0.011 0.011 0.012 0.016 0.010 0.015
MIDLATS 0.029 0.020 0.028 0.026 0.020 0.026
POLAR 0.032 0.028 0.033 0.041 -0.005 0.028

OCEAN 0.019 0.011 0.019 0.017 0.012 0.017
LAND 0.022 0.030 0.024 0.038 0.010 0.030

Table 3. Cosine weighted skin temperature trends (in K yr−1); uncertainties are on the order
of ± 0.015 K yr−1 as explained in the text.

combining to get a closer-to-zero global weighted trend. In addition MERRA2 is the only846

one of the six that (a) does not have the extreme +0.15 K yr−1 warming in the north-847

ern polar region and (b) shows substantially more cooling in the Central African area.848

Using ERA5 monthly data, we devised a test similar to the one mentioned in Section849

4 to determine if the differences between MERRA2 and ERA5 surface temperature trends850

could be due to the temporal sampling (once for MERRA2 versus eight times for ERA5).851

For each month we matched the eight ERA5 timesteps available per month to the tile852

centers and then averaged the surface temperatures per month; the ensuing geophysi-853

cal timeseries was then trended. The day/night ERA5 average of Figure 5 was compared854

to these trends; of note are (a) we did not see the cooling in Africa and near the Antarc-855

tic that is seen in MERRA2 and (b) the main differences between the 1.30 am/1.30 pm856

average in the bottom middle (ERA5) panel were over land (all 5 continents); the his-857

tograms of the differences showed the peak was typically close to 0 K yr−1, but the widths858

over land were about ± 0.02K yr−1 or less (compared to ± 0.005 K yr−1 over ocean).859

Both AIRS L3 and MERRA2 show cooling in the Southern Ocean; we note that although860

MERRA2 is the a-priori for CLIMCAPS L3, their trends are different that those from861

MERRA2; in fact AIRS_RT shows the closest correlation to the observational CLIM-862

CAPS L3 trends. The AIRS L3 trends in the Southern Ocean region could arise because863

of problems identifying ice during the L2 retrieval (private communication : Evan Man-864

ning (JPL) and John Blaisdell (NASA GSFC)) though the MERRA2 trends also show865

significant cooling in that region, where few surface observations from buoys poleward866

of 60◦exist to help resolve these differences (see for example Figure 10 in (Haiden et al.,867

2018)).868

Figure 6 shows the zonally averaged total (land+ocean) and ocean only surface tem-869

perature trends. The equator to midlatitude ocean trends are almost linear for all datasets,870

with the slope for the northern hemisphere being about double that of the southern hemi-871

sphere (roughly 0.001 K yr−1 per deg latitude). Again focusing on the right hand plot,872

the AIRS L3 trends are negative in the Southern Ocean regions, compared to the other873

3 datasets, due to the cooling trends around the Antartic continent shown earlier, but874

then agrees with most of the other datasets over the Antartic; the MERRA2 trends sig-875

nificantly differ between -90 S and -50 S. MERRA2 and ERA5 also show slightly smaller876

warming trends in the Northern Polar, compared to the three AIRS observation-based877

datasets.878

879

We point out that the trends seen in Figure 5 vary noticeably at more local, regional880

levels and furthermore this spatial variation can differ between daytime and nighttime,881

evident in Figure A1 of Appendix A, and that the observational sets (AIRS_RT, CLIM-882
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Figure 6. Zonally averaged surface temperature trends for (left) sum of ocean and land point
and (right) ocean only. The vertical units are K yr−1 while the horizontal axis are degrees lati-
tude.
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Figure 7. dWVfrac/dt (left) without and (right) with MLS a-priori in the upper atmosphere.
The vertical axis are pressure (in mb), the horizontal axis are latitude (in degrees) while the col-
orbar is in yr−1 (fractional water vapor has no units).

CAPS L3 and AIRS L3) had larger differences than ERA5. Discussing the possible causes883

is outside the scope of the paper.884

6.2 Addition of Microwave Limb Sounder Water Vapor A-priori885

The Microwave Limb Sounder (MLS), on board NASA’s Aura platform, flies about886

15 minutes behind AIRS on the same orbit. It is designed for sounding of the atmosphere887

above 300 mb. We computed water vapor trends from the L3 data produced for that in-888

strument (above 300 mb) and used them as an a-priori for the AIRS_RT retrieval.889

890

Figure 7 shows the retrieved fractional water vapor trends when the a-priori trend891

in the upper atmosphere in the left and right panels were zero, or used MLS trends, re-892

spectively. One sees that the additional information brought in by the instrument sen-893

sitive to upper troposphere humidity, significantly changes the water vapor sounding es-894

pecially in the polar region by moving towards the MERRA2 and ERA5 fractional wa-895

ter vapor trends seen in Figure 10. We note that the other related results shown in this896

paper also use the MLS a-priori .897
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Figure 8. Zonally averaged column water vapor trends for AIRS_RT, AIRS L3, CLIMCAPS
L3, ERA5 and MERRA2. Vertical units are in mmw yr−1 while the horizontal axis are in degrees
latitude.

6.3 Column water vapor trends898

Column water is dominated by water vapor amounts close to the surface and the899

column vapor trends thus provide an assessment of the water vapor retrieval quality in900

the lower atmosphere. The water vapor information in the lowest layers is best retrieved901

using the weak water lines in thermal infrared region. As noted earlier this part of the902

retrieval is significantly complicated by the simultaneous presence of nonzero surface tem-903

perature, air temperature and water vapor jacobians in this spectral region, meaning the904

AIRS instrument has much reduced sensitivity to the water vapor amounts in these low-905

est layers. In addition the changing concentration of very minor gases such as CFC-11906

and CFC-12 (Strow & DeSouza-Machado, 2020) are quite evident in the spectral trends,907

further complicating the water vapor trend retrieval for the lowest layers.908

909

Figure 8 shows the zonally averaged column water vapor trends; not shown are the910

error bars which are on the order of ± 0.005 mm/year. AIRS_RT is from our retrievals911

while the rest are directly from the reanalysis or L3 fields. Close examination shows the912

CLIMCAPS L3 column water trend is nearly identical to the MERRA2 trend, as is also913

seen in lower atmosphere water vapor trends shown later in Figure 10. Conversely the914

column water vapor trends for AIRS L3 are negative in the lower troposphere in the mid-915

latitudes and tropics, which is not to be expected given that the surface temperature trends916

are positive. AIRS_RT nominally agrees with ERA5 and MERRA2 in the tropics and917

midlatitudes, but is smaller than either in the northern polar regions. A reduced rate918

for AIRS_RT is additionally seen in the 0-50 N latitudes, where there is a larger frac-919

tion of land (for which we do not use the assumption of constant relative humidity) com-920

pared to the Southern Hemisphere. Screening out the tiles over land slightly improves921

the agreement between reanalysis (ERA5, MERRA2) vs AIRS_RT column water trends.922

Examination of the spectral trends in the window region does not shed any more insight923
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into the differences, as the observation spectral trends and reanalysis reconstructed trends924

are very similar and we are fitting the observed trends. The magnitudes and patterns925

look similar to the 2005-2021 column water trends shown in (Borger et al., 2022), which926

were derived using observations from the Ozone Monitoring Instrument (OMI). We point927

out their 16 year zonally averaged trends look similar to the 20 year ERA5 zonally av-928

eraged column water trends between -60◦S and -10◦S, but become almost a factor of 2929

larger between -10◦S and +40◦N; the zonally averaged OMI 16 year trends are negative930

in the polar regions. The column water trends are summarized in Table 4.931

DATASET OMI AIRS_RT ERA5 MERRA2 AIRS L3 CLIMCAPS L3
mm yr−1 16 years 20 years 20 years 20 years 20 years 20 years

GLOBAL (cosine average) 0.051 0.021 0.035 0.036 -0.009 0.038
TROPICAL 0.083 0.028 0.047 0.042 -0.015 0.045

Table 4. Column water trends based on OMI observations (16 years) and AIRS_RT, ERA5
and MERRA2 (20 years). The units are in mm yr−1; the uncertainties are on the order of 0.1
mm yr−1 for OMI and AIRS_RT, and half that for ERA5 and MERRA2, and AIRS L3 and
CLIMCAPS L3.

D/N differences (not shown) for AIRS_RT were on the order of ± 0.005 mm yr−1
932

(with daytime trends being smaller over land), for AIRS L3 were on the order of ± 0.01933

mm yr−1 or more (with larger values happening over the daytime tropical oceans), while934

that for ERA5 and CLIMCAPS L3 were typically on the order of ± 0.03 mm yr−1 or935

less.936

6.4 Zonal atmospheric temperature and water vapor trends937

938

Figure 9 shows the zonally averaged atmospheric temperature trends from five of939

the datasets in Figures 5,8 above. In the troposphere the AIRS_RT retrievals show the940

same general features as the trends from ERA5, though they begin to diverge in the strato-941

sphere and especially above that. In particular AIRS_RT does not show warming in the942

Southern Polar stratosphere; we have separately looked into seasonal trends and noted943

that our retrieved September/October/November temperature trends in the upper at-944

mospheric Southern Polar regions are on the order of -0.12K yr−1, possibly leading to945

an overall no net heating/cooling for the annual trends. We highlight that our results946

are smoother than those of the other datasets, while the other sets have noticeable dis-947

continuities that may not be physical under the thermodynamics or fluid dynamics frame-948

works. In addition we point out that both our results and AIRS v7 L3 show a hint of949

cooling over the tropical surfaces. Note that CLIMCAPS is initialized by MERRA2, and950

their temperature trends are quite similar. AIRS v7 looks similar to AIRS_RT except951

in the tropics where it almost has cooling in the lower troposphere and much more warm-952

ing in the lower stratosphere. The correlations between AIRS_RT and the [AIRS L3,953

CLIMCAPS L3, MERRA2, ERA5] temperature trends of Figure 9 are [0.74,0.65,0.74,0.72]954

respectively.955

956

Figure 10 shows the zonally averaged atmospheric fractional water vapor trends957

(d/dt WV(z,t)/<WV(z,t)>). The five panels are markedly different from one another.958

The AIRS_RT trends resemble those of ERA5 in the tropical troposphere, though we959
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Figure 9. Zonally averaged dT/dt shown in 5 panels. Horizontal axis is in degrees latitude
while vertical axis is pressure (mb). The y-limits are between 10 to 1000 mb, on a logarithmic
scale. The colorbar is units of in K yr−1.
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Figure 10. Zonally averaged dWVfrac/dt shown in 5 panels. Horizontal axis is latitude while
vertical axis is pressure. The y-limits are between 100 to 1000 mb, on a linear scale. The colorbar
units are in yr−1, as fractional water vapor is dimensionless.
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Figure 11. The 400 mb fractional water vapor trends for (left) AIRS_RT and (right) ERA5
show general agreement except in the Southern Polar Regions. The colorbar units are in yr−1, as
fractional water vapor is dimensionless.

do not have drying in the lower tropical layers. Conversely, the observed trends in the960

Southern Polar (AIRS L3, CLIMCAPS L3 and AIRS_RT) show drying rather than wet-961

ting, though AIRS_RT is less than that of CLIMCAPS/MERRA2. AIRS_RT is an out-962

lier in the upper polar atmosphere trends, as both the signals and the jacobians are close963

to zero. Of some concern is a little bit of drying in the northern polar region, where there964

are low H2O amounts leading to small jacobians. CLIMCAPS v2 looks quite similar to965

the MERRA2 trends. AIRSv7 shows substantial drying in the lower troposphere, and966

considerable wetting in the upper troposphere, compared to any of the other datasets.967

Spectral closure studies (using the AIRS v7 H2O trend × the H2O jacobians derived above968

from ERA5 average profiles) are not shown here, but differ noticeably from the CCR trends969

from AIRS v7 in the 1300-1600 cm−1 region, indicating there are inadequacies in the AIRS970

V7 water vapor retrievals. The correlations between AIRS_RT and the [AIRS L3, CLIM-971

CAPS L3, MERRA2, ERA5] fractional water vapor trends of Figure 10 (limited to 100972

mb, 1000 mb) are [0.65,0.24,0.36,0.58] respectively.973

Figure 11 shows the 400 mb fractional water vapor trends, with the left panel be-974

ing the AIRS_RT trends while the right panel is the ERA5 trends. Note that there is975

general agreement except in the Southern Polar region, as also seen later in Figure 10976

in the other two observational L3 datasets (AIRS v3 and CLIMCAPS). This could be977

related to work by (Boisvert et al., 2019) who showed decreasing evaporation from the978

Southern Ocean in the 2003-2016 period due to increasing ice cover.979

980

7 Uncertainty981

The uncertainties for the AIRS v7 geophysical products are impacted by radiance982

noise amplification due to cloud clearing (Susskind et al., 2003) and the neural net first983

guess, while state vector errors are estimated based on regressions. CLIMCAPS L2 geo-984

physical products are similarly impacted by cloud clearing noise in the radiances, but985

these are fully propagated together with geophysical error estimates from the MERRA2986

first guess, through the retrieval algorithm which uses Optimal Estimation (Smith & Bar-987

net, 2020). No estimate of uncertainties are available for the monthly L3 products.988

The uncertainties for the AIRS_RT trends is much more straightforward : the spec-989

tral uncertainties shown in Figure B2 are used together with the state vector covariance990

matrices to generate the uncertainty matrix using the relevant equations of Optimal Es-991
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Figure 12. Zonally averaged D/N plots of (A) temperature uncertainties in K yr−1 and (B)
temperature trends in K yr−1 together with null hypothesis. (C) and (D) are the same except
for fractional water vapor uncertainty and trends in yr−1. Horizontal axis are in degrees latitude
while vertical axis are pressure (mb) - logarithmic for temperature and linear for water vapor.
See text for more detailed explanation.

timation Rodgers (2000); we use the diagonal elements for the final uncertainties. Pan-992

els (A) and (C) of Figure 12 shows the zonally averaged (D/N) uncertainties as a func-993

tion of pressure and latitude. Inspection of the radiance trends uncertainties shown in994

the center panel of Figure B2 shows the upper atmosphere temperature sounding region995

(650-700 cm−1) has much larger uncertainty in the polar regions. The instrument and996

spectroscopy characteristics, coupled with these observational uncertainties, are such that997

for temperature the smallest errors are in the tropics while the largest errors are in po-998

lar upper atmosphere, which are the regions below 100 mb where the ERA5 trends dif-999

fer most from AIRS_RT trends. Similarly for water vapor the larger errors are in the1000

lower atmosphere and above about 300 mb; the constant RH assumption and MLS a-1001

priori help alleviate the errors in the retrieved trends. We point out earlier work on study-1002

ing upper tropospheric/lower stratospheric humidity over tropical cyclones also used MLS1003

climatology together with AIRS observations (Feng & Huang, 2021).1004

The Z-test confirmed this picture, as seen in panels (B) and (D) of Figure 12, which1005

show the temperature and fractional water vapor trends, together with black dots mark-1006

ing the (latitude,altitude) points where the trends are larger than the uncertainty in the1007

trends, at the 5% significance level. This happens in panel (B) for the temperature trends1008

in most of the tropical/mid-latitude free troposphere (and stratosphere) but not at the1009

southern polar stratosphere; and in panel (D) for fractional water vapor trends in the1010

200-600 mb range, from the Southern Polar region to about +60 N latitude, and some1011

spots in the Northern Polar.1012

1013
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8 Discussion1014

In general for surface temperature trends, the disagreements between the six sets1015

shown in Figure 5 are over the polar regions and over land (especially over the Amazon1016

and Central Africa) and are smallest over tropical and mid-latitude oceans, indicating1017

the best agreements, except for slightly larger differences off the western coast of the Amer-1018

icas and Africa (which have a prevalence of MBL clouds). The atmospheric temperature1019

trends in general agreed except for the upper atmosphere polar regions and in the high1020

altitudes (less than about 200 mb). Similarly fractional water vapor trends differed most1021

in the upper atmosphere (200 mb and above) and in the tropical/mid-latitude 600-8001022

mb region. A quick glance at Figure 10 shows the former is due to lower sensitivity to1023

upper atmosphere water vapor, leading the AIRS_RT retrievals to have low values while1024

the AIRS L2 retrieval is initialized by a neural net; conversely the latter is due to the1025

AIRS L3 retrieval being negative while the rest were mainly positive. Similarly the AIRS_RT1026

retrieval differs above the Antarctic continent.1027

In general the observed surface temperature trends from the AIRS_RT retrievals1028

agree with the ERA5 and MERRA2 trends, as well as the NASA GISS trends, except1029

in the Southern Antarctic. That is a region where there are few surface observations; for1030

retrievals there are competing effects of using ice vs ocean surface emissivity. Overall,1031

the AIRS_RT retrieved surface temperature trends are typically in between ERA5 and1032

MERRA2 for land + ocean in all regimes (tropical, midlatitude and polar), though slightly1033

larger overall for ocean than the two reanalysis datasets; in general they are closer to the1034

ERA5 trends than the MERRA2 trends.1035

(Strow et al., 2021) demonstrated that the long- and medium- wave channels of the1036

AIRS instrument are radiometrically stable to better than 0.002-0.003 K yr−1, which is1037

much smaller than the surface and tropospheric temperature trends in the reanalysis mod-1038

els, AIRS L3 data and our retrieved trends. A separate analysis of spectral trend un-1039

certainties after 05,10,15,20 years (not shown here) show that these uncertainties have1040

been steadily decreasing and are now approaching this number, as can be seen in the bot-1041

tom left panel of Figure 3. Furthermore, though we cannot guarantee only cloud free scenes1042

in our chosen Q0.90 observational dataset used in this paper, the high correlations be-1043

tween other dataset surface trends compared to ours, is a good indication that our re-1044

sults come from mostly cloud-free scenes, or scenes whose clouds have negligible impact1045

on our results.1046

The observed zonal temperature trends agree with those from the models and the1047

AIRS L3 products, except in the polar regions. Again this could be an issue of using slightly1048

incorrect surface emissivity for the AIRS_RT retrievals. In addition we point out that1049

since there is very little water vapor, the temperature jacobians near the surface are quite1050

small in magnitude (compared to more humid atmospheres) and so it is difficult to sep-1051

arate out the effects of surface temperature trends versus lower atmosphere temperature1052

and H2O trends. The quantile construction used in this paper means that for example1053

tiles straddling the subcontinent of India and the ocean will preferentially pick the land1054

surface observations for daytime, which could lead to misleading trends on these coastal1055

tiles. It is possible to subdivide the 3◦× 5◦tiles into for example 1◦× 1◦grids and do the1056

analysis, but the number of observations per small grid cell would drop, leading to more1057

noise in the retrieved trend.1058

In general the AIRS_RT retrieved column water trends are slightly smaller than1059

ERA5 in the Southern Hemisphere but noticeably smaller in the Northern Tropics to mid-1060

latitudes. We have mentioned difficulties we have retrieving H2O close to the surface and1061

in the upper atmosphere, due to the known sensitivity of infrared sounders whose wa-1062

ter vapor averaging kernels peak in the 300-600 mb range, and we have pointed out ex-1063

amination of the spectral residuals in the window region shows we are fitting the signal.1064

The MERRA2 and CLIMCAPS column water vapor trends are quite similar, while the1065
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AIRSv3 L3 trends are noticeably different, being negative almost everywhere. If we start1066

with zero a-priori for water vapor at the surface, we can fit the spectral trends but the1067

retrieved water vapor trends in the lower layers which dominate column water amounts,1068

can leads to column water trends that are easily double or more than the results for the1069

other datasets.1070

Given the complex numerical algorithms used in both the reanalysis models and1071

the AIRS L3 retrievals as well as those in the AIRS_RT trends, it is difficult to offer pre-1072

cise explanations for any of the trends shown above. Our results are relatively robust1073

to changes in the covariance or Tikonov parameter settings. For instance changing them1074

by factors of two would keep the trends about the same, though of course the uncertain-1075

ties would change. There are however a few general points that can be made. The first1076

is that since infrared instruments are sensitive to the 300-800 mb region and lose sen-1077

sitivity outside this, the retrievals from AIRS_RT and AIRS L3 have difficulties with1078

water vapor in the lower (Planetary Boundary Layer) and upper troposphere/lower strato-1079

sphere. One way to mitigate this is to use trended observed data from external sources1080

in the a-priori , while keeping the a-priori trends for all other parameters as 0. For ex-1081

ample we have shown we can use the MLS observations above 300 mb without signif-1082

icantly degrading the AIRS_RT retrieval in the middle and lower atmosphere; conversely1083

the CLIMCAPS retrievals are initialized by MERRA2 and while they can pull out weather1084

signals, their L3 trends are still quite closely tied to the MERRA2 trends. The tropical1085

and mid-latitude ocean surface temperature trends from the numerical models that as-1086

similate observed data, L3 products and AIRS_RT are very similar; however they start1087

to show differences where there are few in-situ observations combined with problems with1088

ice identification (surface emissivity)/cold temperatures which exacerbate the drifting1089

AIRS detector problems (Strow et al., 2021), such as the Arctic and Southern Ocean.1090

9 Conclusions1091

We have designed a novel retrieval method, specifically to obtain global thermo-1092

dynamic atmospheric climate trends. It uses longterm stable, high spectral resolution1093

infrared allsky hyperspectral observations which are first subset for “nominally clear” scenes.1094

The geophysical trends are derived using observed trends from the well characterized (ra-1095

diometrically stable) radiances and from zero a-priori (except for a constant relative hu-1096

midity assumption). This makes them much more direct and traceable than trends from1097

traditional L2 retrieval algorithms, which use complicated a-priori information. We also1098

performed “radiative closure” tests by running the monthly reanalysis or L3 data through1099

a radiative transfer model to compare the spectral trends so obtained against the observed1100

spectral trends. The most noticeable disagreement in spectral trend radiance space was1101

in the water vapor free troposphere sounding regions.1102

The temperature and water vapor trends retrieved from the “nominally clear” ra-1103

diance trends resemble those computed from monthly ERA5 and MERRA2 reanalysis.1104

The radiative spectral closure helps identify the cause of differences in the geophysical1105

trends, rather than solely attributing them to deficiencies (eg the well known reduced1106

sensitivity to water vapor near the boundary layer and above 200 mb) with our retrieval.1107

For example the AIRS_RT temperature trends are quite similar to the reanalysis (MERRA2/ERA5)1108

trends, while the water vapor (and/or Relative Humidity) trends are quite different, es-1109

pecially in the lower troposphere and upper troposphere, which is clearly manifest as dif-1110

ferences in the spectral trends in the water vapor sounding region.1111

The 20 years of AIRS observations were binned into nominal 3 × 5 degree grid boxes1112

covering the planet, with a time step of 16 days, from which anomalies and trends were1113

obtained. To alleviate the reduced sensitivity of hyperspectral sounders to water vapor1114

in the lower atmosphere we used an assumption of 0.01 increase in relative humidity to1115

initialize the a-priori lower atmosphere fractional water vapor rates, while we similarly1116
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used Microwave Limb Sounder trends as an a-priori to address the high altitude water1117

vapor deficiencies caused by lower sensitivity to upper atmosphere water vapor. New or1118

updated time dependent surface emissivity databases may become available in the fu-1119

ture, enabling us to include those effects into Equation 4. Problems in the polar regions1120

and Planetary Boundary Layer water vapor retrievals will be harder to overcome since1121

there is very little sensitivity to water vapor in these regions, together with fewer obser-1122

vations to compare against, though more work is planned to address both of these.1123

In this paper we used the 90th quantile (Q0.90) nominally “hottest” observed BT12311124

to form a time series over which to obtain radiance trends, after establishing that the1125

spectral trends from this quantile differed by less than about ± 0.0015 K yr−1 from the1126

50th (or average) quantile. In the future we plan to base the subset selection on MODIS1127

cloud products (obtained at 1 km resolution compared to the AIRS 15 km resolution).1128

In any case the AIRS L1C Q0.90 spectral trends used for the AIRS_RT results are very1129

comparable to trends from quality assured binned AIRS CCR data (Manning, 2022). The1130

quantile method allows us to select which observations to use in the trends : we have ex-1131

plored doing the trend retrievals using the cloud fields contained in ERA5, together with1132

the TwoSlab cloud algorithm (De Souza-Machado et al., 2018) to compute jacobians when1133

clouds are present, together with trends from the Q0.50 observational dataset described1134

above. The retrieved geophysical trends resemble those described above in the mid to1135

upper atmosphere, and differ in the lower atmosphere, but more work is needed on this1136

and is not discussed further. Longwave clear sky flux trends (both outgoing top-of-atmosphere1137

and incoming bottom-of-atmosphere) and climate feedbacks will be discussed in a sep-1138

arate paper.1139

While the Aqua platform is scheduled to be terminated within the next few years,1140

copies of near identical CrIS instruments are already in orbit, and more will be launched1141

over the next few years, till at least 2040. The Climate Hyperspectral Infrared Radiance1142

Product (CHIRP) (Strow et al., 2021) will seamlessly combine the AIRS observations1143

between 2002-2015 to CrIS observations from 2015-2040 to obtain a 40 year observational1144

radiance record over which to study climate. This availability means that AIRS_RT and1145

future AIRS/CrIS versions, is well positioned to enable climate analysis of geophysical1146

trends for years to come.1147

Appendix A Day versus Night surface temperature trend differences1148

Figure A1 shows the (top) daytime and (middle) nighttime surface temperature1149

trends; from left to right the datasets are (observational) AIRS_RT, AIRS L3, CLIM-1150

CAPS L3 and (reanalysis) ERA5. In general the AIRS observations show enhanced day-1151

time cooling over the Indian subcontinent and Central Africa, compared to the ERA51152

model; they also show daytime warming trends over continental Europe and central Asia1153

and the Amazon are larger than during the nightime. With the large ocean heat capac-1154

ity and smaller land heat capacity, the land is expected to show more of a diurnal cy-1155

cle than ocean. ERA5 sees warming over Eastern/Central Africa during daytime while1156

the observations show cooling. Similarly the three observations show more daytime cool-1157

ing over the Indian sub-continent and south eastern Australia than does ERA5; we omit1158

more detailed analysis in this paper. During the nighttime, the AIRS L3 product has1159

cooling over C. Africa and parts of the Amazon. The day-night differences are seen in1160

the bottom row of the same figure. Note the colorbar is the same for all three rows. The1161

differences are close to zero over the ocean. AIRS_RT and CLIMCAPS L3 see more day-1162

time cooling over E. Africa and the Indian subcontinent. Overall the magnitude of the1163

day - night differences for the observations are larger for the AIRS observations than for1164

ERA5. ERA5 also sees negative differences over Central Asia compared to the AIRS ob-1165

servations, which see positive differences (higher surface temperature trends during the1166

daytime).1167
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Figure A1. Top two rows : The (top) day and (middle) night surface temperature trends
for AIRS_RT, AIRS L3, CLIMCAPS L3 and ERA5. Third row (bottom) is the D-N difference.
Colorbar units are in K yr−1.

1168

The atmospheric temperature and fractional water vapor day-night differences are1169

quite small (compared to the average values) and not shown here; AIRS L3 shows no-1170

ticeable more wetting of the 600-800 mb region during daytime versus nightime, com-1171

pared to the other three.1172

Appendix B Spectral closure : comparisons between observed and sim-1173

ulated spectral trends1174

The main body of the manuscript details comparisons of climate geophysical trends1175

using a purpose designed algorithm to analyze radiance observation trends, versus those1176

from reanalysis and monthly L3 fields. In this Appendix we present the comparisons in1177

radiance spectral trend space, by using the spectral closure method to assess monthly1178

thermodynamic output from reanalysis and/or L3 products (see for example (X. Huang1179

et al., 2023)). This is accomplished by geolocating the entire 20 year monthly reanal-1180

ysis and L3 surface temperature, air temperature, water vapor and ozone fields for all1181

72 × 64 tiles. We also include realistic column linearly-increasing-with time mixing ra-1182

tios for CO2, CH4 and N2O as well as land or ocean surface emissivity co-located to tile1183

centers together with view angles of about 22◦, which is the average view angle of the1184

tiled observations. The model fields are then converted to spectral radiances by running1185

through the SARTA fast model (Strow, Hannon, DeSouza-Machado, et al., 2003). Finally,1186

spectral radiance trends are computed from the time series of (clear sky) spectral radi-1187

ances using Equation 2.1188
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Figure B1. Globally averaged spectral trends (in K yr−1) for the 6.7 µm (1400-1650 cm−1)
free troposphere water vapor sounding region, as a function of wavenumber (cm−1). AIRS L1C
observations (blue) are compared to spectral closure from the standard monthly AIRS L3 re-
trievals (red) and CLIMCAPS L3 (yellow) and from monthly ERA5 simulations (purple). The
reconstructed AIRS_RT trends very closely match the AIRS L1C observations and are not
shown here.

Here we select two examples to illustrate differences in the five datasets we use in1189

this paper. Firstly we study spectral trends in the water vapor sounding region. Water1190

vapor is highly variable in space and time, meaning water vapor retrievals using hyper-1191

spectral sounders radiances differ most from Numerical Weather Prediction (NWP) fore-1192

casts. In particular the typical ± 90 minute difference between observation and forecast1193

means sounders provide most accurate water vapor information, when considered locally1194

and at a particular time. However this will not affect the water vapor trends we show1195

in this paper since atmospheric water vapor timescale is on the order of about a week1196

to ten days (van der Ent & Tuinenburg, 2017), and we are also considering data points1197

averaged over 16 or more days. Figure B1 show the globally averaged brightness tem-1198

perature trends (in K yr−1) in the 1350 - 1650 cm−1 water vapor sounding region. The1199

blue curve shows the trends from the AIRS observations used in this paper, while spec-1200

tral trends constructed from the AIRS L3/ CLIMCAPS L3 retrievals are in red/yellow1201

and the ERA5 model fields are in purple. The AIRS observations and ERA5 constructed1202

spectral trends are positive in this region, while the AIRS L3 and CLIMCAPS L3 trends1203

are obviously different, being negative in this water vapor sounding region. The subtle1204

differences in these spectral trends arise from differences in the geophysical trends be-1205

tween observations and the models themselves, and were addressed in Sections 6.3 and1206

6.4 of the text.1207

1208

1209

Second, we focus on comparing zonally averaged spectral trends between AIRS ob-1210

servations and ERA5 simulations. Figure B2 shows the AIRS observed Q0.90 (nominally1211

clear) descending (night) zonally averaged results in K yr−1 in the left panel, and the1212

zonally averaged simulated clearsky (without clouds) spectral trends (also in K yr−1)1213

from monthly ERA5 fields in the right panel. The center panel shows the spectral trend1214
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Figure B2. 20 year zonally averaged spectral brightness temperature trends (colorbars in K
yr−1) for nightime (left) AIRS Q0.90 observations and (right) clear sky simulations using ERA5
monthly model fields. The center panel shows the AIRS Q0.90 spectral uncertainties (color-
bar also in K yr−1). Realistic linear trends of CO2, CH4 and N2O were included in the ERA5
simulations, while the O3 trends in ERA5 are from the reanalysis itself. Horizontal axis are in
wavenumbers (cm−1) while vertical axis are in degrees latitude.

uncertainties from the observations, also in K yr−1. Earlier sections, including Section1215

6.4 compared the geophysical trends between retrieved from AIRS observation and re-1216

analysis/L3 data fields. The similarities/ differences in geophysical trends between ob-1217

servations and models/operational data can be partially understood from the similar-1218

ities/differences in the spectral trends. For example, the H2O sounding region (1350-16001219

cm−1) of the left and right panels of Figure B2 shows roughly similar (positive) spec-1220

tral trends in the tropics and mid-latitudes; there are some slight differences in the high1221

altitude channels (1450-1550 cm−1 region). The main body of text demonstrated how1222

these differences translate to subtle differences in the geophysical trends. Observations1223

and simulations both have positive dBT/dt in the 800-960,1150-1250 cm−1 region, in-1224

dicating surface warming; however the ERA5 simulation show more warming in the south-1225

ern polar regions than do the AIRS observations. Note the mean warming in the trop-1226

ics for both observations and ERA5 simulations is less than that in the mid-latitudes,1227

and the polar regions show the largest overall change in brightness temperature in the1228

window region. Large differences are seen in the 10 um (1000 cm−1) O3 sounding region,1229

which are not surprising since ozone assimilation is not a primary goal of ECMWF as-1230

similation; here we do not address these as we focus on the changes to the moist ther-1231

modynamic state. The window region trends computed using the ERA5 model are more1232

positive in the Southern Polar region. Conversely the 640-700 cm−1 spectral region is1233

positive, especially in the tropics; however the observations show a net cooling trend away1234

from the tropics, compared to the ERA simulations. This demonstrates the importance1235

of the model → spectral trend comparisons, given the accuracy of the AIRS observations.1236
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