
SARTA ANALYTIC JACOBIANS

Sergio DeSouza-Machado1 and Larrabee Strow1,2

1 Joint Center For Earth Systems Technology, University of Maryland Baltimore County
2 Department of Physics, University of Maryland Baltimore County

contact : sergio@umbc.edu

1 Introduction

SARTA is a fast Radiative Transfer code with TwoSlab Cloud scattering ability [De Souza-
Machado et al., 2018] that has been extensively tested for clear sky accuracy against e.g.,kCARTA
[De Souza-Machado et al., 2020] and clouds [Aumann et al., 2018, 2023, De Souza-Machado
et al., 2018].

It currently takes about 4 minutes to generate radiances for one granule of AIRS L1C data
(2645 channels × 12150 FOVS), given input atmospheric profiles (thermodynamic and cloud)
supplied by e.g.,radiosondes or Numerical Weather Prediction (NWP) model fields that are put
into a 100 layer atmosphere model.

This is more than adequate for processing observations for comparison purposes (given
that line by line codes such as kCARTA take about 40 seconds to process one spectrum!). But if
used for retrievals where estimates of jacobians are needed, the times become very large (for
example would need to run it 100 times for T(z) jacobians, 100 times for WV(z) jacobians and
another 100 times for O3(z) jacobians, or about 20 hours for all channels; more if you need
e.g.,CH4, N2o etc jacobians).

For these purposes, an analytic SARTA jacobian code has been written. This document
outlines the changes to the SARTA code, and the ideas behind propagating the thermodynamic
(temperature and constituent gases) analytic derivatives at layer j to the Top of Atmosphere
(TOA); cloud jacobians still need to be done by finite difference.

2 SARTA original flow

Figure 1 shows the “regular” SARTA flow diagram. After opening an rtp file and reading in
the 7 sets of coefficients, it then generates all the predictors for each of the 7 breakout sets
(ycalparX, X = 1,7) and then produces the ODs for all 7 sets (ycaltX_od, X = 1,7). After that it
loops over each required channel to do the radiative transfer, pulling in the necessary ODs for
the ycaltX_od as needed. We remind the reader the scattering radiative transfer is a weighted
sum over 4 radiance streams : clear, cloud 1 only,cloud2 only and cloud1,2

3 SARTA analytic jacobian flow

Figure 2 shows the “analytic jacobian” SARTA flow diagram. The main difference is that the
loops over channels start at the (ycaltX_od(i), X = 1,7), continuing with the radiative transfer.

1

4 The Analytic Derivatives of the Predictors

The SARTA clear sky details are encapsulated in e.g.,[Strow et al., 2003] where based on co-
efficients Cj and predictors Pj based on the atmospheric profiles and view angles T(z), WV(z),
O3(z), sec(θ) so one can form effective optical depths at each layer L

τ(i,L)=
J∑
j=1

CjPj(T(z),WV(z),O3(z),θ)

with J typically being less than 10; the ODs are computed at each layer L = 1,100 (where L= 1
= TOA and L=N is GND) for e.g.,variable gases WV, CO2, O3, N2O, CO, CH4, SO2, HNO3 and
the “rest of the uniform fixed gases” which include O2, N2 etc, using the atmospheric profiles
T(z),WV(z),O3(z) and view angle information θ.

This formulation makes it evident that the jacobian is ‘”simply” related to the derivative of
τ with respect to any thermodynamic variable X (where X can be temperature, water vapor
amount, ozone amount, etc), given by

∂τ(i,L)
∂XL

=
J∑
j=1

Cj
∂Pj(T(z),WV(z),O3(z),sec(θ))

∂XL
(1)

and so can “easily” be calculated, using the same coefficients C(j). Note these derivatives are
for optical depth at angle θ

4.1 “Simply” the derivative

We will typically denote the T ,WV,O3 derivatives as _T,_1,_3. Most of the predictors simply
depend on layer L, and the derivatives of P(L) can indeed be obtained very simply by using
the product rule, for example as seen in Table 1

Table 1: Easy derivatives

PREDICTOR NAME THERMODYNAMIC ∂P
∂Tl

∂P
∂WVl

∂P
∂O3l

P(L) + CONSTITUENT P(L)_T P(L)_1 P(L)_3
DEPENDENCE

TR T(L)/TREF(L) 1
TREF(L) 0 0

DT PTEMP(L) - RTEMP(L) 1 0 0
A_W PWAMNT(L)/RWAMNT(L) 0 1/RWAMNT(L) 0
A_O POAMNT(L)/ROAMNT(L) 0 0 1/ROAMNT(L)

TJUNKS TR*TR 2*TR*TR_T 0 0
FPRED1(1) SECANG(L)*TJUNKS SECANG(L)*TJUNKS_T 0 0
OPRED1(3) SECANG(L)*A_O*DT SECANG(L)*A_O*DT_T 0 SECANG(L)*DT*A_O_3

= SECANG(L)*A_O = SECANG(L)*DT/ROAMNT(L)

4.2 Not so “Simply” the derivative

Of course things are not always so simple. This is especially so in the case of the predictor
depending on “all the layers above layer L” P(L,L−1,L−2, ...1), with layer L= 1 being the TOA.
For example

PDP(L) = PRES(L)(PRES(L)−PRES(L−1))
WZREF(L) =

∑L
j=1PDP(J)WAMNT(J)ref

WZ(L) =
∑L
j=1PDP(J)WAMNT(J)

AZ_W(L) = WZ(L)
WZREF(L)

2

So technically if you perturb layer L you also “perturb” all layers above it. Which means if
the amount of water vapor in layer L is increased by α, so is that of all the layers above it
WZ(L)→WZ(L)(1+α), while of course the reference amount(s) stay unchanged. This means
the original amounts (denoted by “0” below)

AZ_W0(L)= WZ0(L)
WZREF(L)

=
∑L
j=1PDP(j)WAMNT(j)∑L

j=1PDP(j)WAMNT(j)ref

are changed to amounts X below

AZ_WX(L)= WZX(L)
WZREF(L)

=
∑L
j=1PDP(j)WAMNT(j)(1+α)∑L
j=1PDP(j)WAMNT(j)ref

and so the change in AZ_W(L) which is the cumulative amount at layer L is now

∆(AZ_W(L))
∆(GasAmount(L)) = AZ_WX(L)−AZ_W0(L)

αWAMNT(L)
= α

∑
PDP(j)WAMNT(j)∑

PDP(j)WAMNT(j)ref
1

αWAMNT(L)
∂AZ_W(L)
∂WAMNT(L) = AZ_W(L)

WAMNT(L)

We can now use these ideas to get the derivatives of the ‘predictors which depend on these
‘layer above” predictors! for example as seen in Table 2

Table 2: Not so Easy derivatives

PREDICTOR NAME THERMODYNAMIC ∂P
∂Tl

∂P
∂WVl

∂P
∂O3l

P(L) + CONSTITUENT P(L)_T P(L)_1 P(L)_3
DEPENDENCE

A_W PWAMNT(L)/RWAMNT(L) 0 1/RWAMNT(L) 0
WJUNKA SECANG(L)*A_W 0 SECANG(L)*A_W_1 0
WJUNKZ WJUNKA*A_W/AZ_W 0 WJUNKA_1*A_W/AZ_W + 0

WJUNKA*(AZ_W*A_W_1 - A_W*AZ_W_1)/AZ_W/AZ_W

4.3 OPTRAN

The above coefficients and predictors are based on a pressure scale (ie given index L you
always know the pressure P(L); it is the gas amount Q(L) and temperature T(L) which must
be given to you by e.g.,a sonde measurement or a NWP model, in order for you to estimate the
gas optical depth OD(L)=OD(q(L),T(L),p(L))=OD(q(L(p)),T(L(p))) ie temperature and
gas amounts are predictors.

The gas amounts and mixing ratios of variable gases such as WV vary by orders of magnitude
over the 0-80 km of a typical atmosphere model. The OPTRAN [McMillin et al., 1995] methodol-
ogy estimates optical depths using layer to space gas amount as the grid, with pressure being
a predictor OD(L)=OD(Q(A),T(A),p(A))=OD(T(A(a)),P(A(a))) ie temperature and pres-
sures are predictors. SO one has to interpolate p,T and the weighted p,T onto these grids, do
the OPTRAN fast model coefficient × predictor magic, then interpolate back ont other usual
AIRS 100 layers pressure grid.

Which means the jacobians need to involve all these stages ... complicating things quite a bit.
But the ideas remain the same; some are simple derivatives, most are “layer above” derivatives.

3

Once they are computed, they need to be used in differentiating the linear weighting terms that
put the P(L) onto the A(a) grid. Once that is done, the optical depths need to be interpolated
onto the layer-to-space absorption grid; so once again the derivatives need to be computed
there. Quite a mess.

5 Propagating analytic derivatives from layer j to TOA

The one layer clear sky equation governing radiative transfer ([De Souza-Machado et al., 2020,
Goody and Yung, 1989, Liou, 1980]) is given by

µ(θ)
dr(ν)
dτ0

=−r(ν)+B(ν,T) (2)

where µ is the cosine of the zenith angle θ, B(T) is the Planck function at layer temperature
T and r(ν) is the Planck radiance at wavenumber ν . Finally τ0 is the nadir optical depth; the
optical depth at angle θ is given by

τ(θ)= τ0

cos(θ)
= 1
µ
τ0 (3)

At the top of layer i, the solution to is

ri(ν)= ri−1(ν)e
− τ0(i,ν)

µ +B(ν,Ti)(1−e−
τ0(i,ν)
µ) (4)

where ri−1 is the radiation incident at the bottom of this layer from the top of the previous
layer i−1 (or if i= 1, the surface emission ε(ν)B(ν,TS)).

Propagating this up through many layers N then gives the radiance at the TOA

rN = ε(ν)B(ν,TS)e−
∑
i=1N

τ0(i,ν)
µ +

N∑
i
B(ν,Ti)(1−e−

τ0(i,ν)
µ)e−

∑N
j=i+1

τ0(j,ν)
µ (5)

5.1 Derivatives for one layer

We are interested in temperature and gas constituent derivatives for a clear sky; Remember
optical depth depends on gas amount q and temperature T (since layer i implicitly also gives
a pressure dependence); Then for one layer we can differentiate Equation 4 with respect to
temperature T and gas amount q to get (after some algebra, and dropping layer index i and
wavenumber dependence ν from the equations)

∂r
∂T
=
(
µ
∂r
∂τ0

)(
1
µ
∂τ0

∂T

)
+ ∂B(T)

∂T
(1−e

τ0
µ)=A(r)E(T)+C(T) (6)

∂r
∂q
=
(
µ
∂r
∂τ0

)(
1
µ
∂τ0

∂q

)
=A(r)G(q) (7)

Looks complicated but we know everything (also see e.g.,Equation 8 in [Liu et al., 2006]) :

• the radiance derivatives wrt OD A(r)=µ ∂r∂τ0
from the right hand side of Equation 2 above

• the right hand side of Equation 4 above says what top-of-layer radiance to use in A(r)

• the OD partial derivatives wrt thermodynamic variables E(T) = 1
µ
∂τ0
∂T ,G(q) =

1
µ
∂τ0
∂q come

from Equation 1 above!

• it is trivial to compute C(T)= ∂B(T)
∂T (1−e

τ0
µ)

4

5.2 Derivatives for one layer at TOA

But you need to propagate it up! Remember the radiative transfer is done iteratively, or if you
like recursively; since the radiation from surface goes through layer 1, then to layer 2 and so
on till layer N at TOA. Which means

rN(ν)= rN−1(ν)e
− τ0(N,ν)

µ +B(ν,TN)(1−e−
τ0(N,ν)
µ) (8)

But since

rN−1(ν)= rN−2(ν)e
− τ0(N−1,ν)

µ +B(ν,TN−1)(1−e−
τ0(N−1,ν)

µ) (9)

that means

rN(ν)= rN−1(ν,rN2(ν))e
− τ0(N,ν)

µ +B(ν,TN)(1−e−
τ0(N,ν)
µ) (10)

and so on to the layer you are interested in J

rN(ν)= rN−1(ν,rN2(ν,rN2(ν(....(rJ(ν,Tj ,qj))))))e
− τ0(N,ν)

µ +B(ν,TN)(1−e−
τ0(N,ν)
µ) (11)

Recall that radiances at the bottom of layer i are attenuated by e−τ0(i,ν)µ as they propagate
to the top of the layer. This means differentiating Equation 11 gives an attenuation from every
layer above that ie from the top of the layer J to the TOA

∂rN
∂XJ

= ∂rN
∂rN−1

∂rN−1

∂rN−2

∂rN−2

∂rN−3
...
∂rJ+1

∂rJ
∂rJ
∂XJ

(12)

∂rN
∂XJ

= e−
τ0(N,ν)
µ e−

τ0(N−1,ν)
µ e−

τ0(N−2,ν)
µ ...e−

τ0(J+1,ν)
µ

∂rJ
∂XJ

(13)

∂rN
∂XJ

= e−
∑N
k=J+1

τ0(k,ν)
µ
∂rJ
∂XJ

(14)

where we know
∂rJ
∂XJ from the one layer derivatives in Equations 6,7 above! Again, also See

Equation 8 in [Liu et al., 2006]!!!

6 Various : surface and background thermal and solar contribution and NLTE

6.1 Surface

The surface emission term, seen at TOA, is given by

rsurface(ν)= ε(ν)B(ν,TS)e−
∑N

1
τ0(ν,i)
µ

which means the derivative at the TOA is given by

∂rsurface(ν)
∂Ts

= ε(ν)∂B(ν,TS)
∂T

e−
∑N

1
τ0(ν,i)
µ

5

6.2 Background thermal

This is technically complicated, but lets assume we have calculated the term propagating
downwards and have it as rbackground(ν) just as it is incident downwards at the surface.
It is then reflected and propagates to the TOA, attenuated at each layer as it goes up. So the
term at the TOA is

rref lected_thermal(ν) =ρ(ν)rbackground(ν)e−
∑N

1
τ0(ν,i)
µ

where typically ρ(ν)= (1−ε(ν))/π (Lambertian reflectance). The derivatives at each layer are
then added on to the jacobians above, given by

∂rref lected_thermal(ν)
∂XJ

=−1
µ
τ0(ν,J)

∂τ0(ν,J)
∂XJ

rref lected_thermal(ν)

6.3 Solar

This is technically complicated, but lets assume we have calculated the solar term propagating
downwards and have it as rsolar (ν) just as it is incident downwards at the surface. It is then
reflected and propagates to the TOA, attenuated at each layer as it goes up. So the term at the
TOA is

rref lected_solar(ν) =ρ(ν)rsolar (ν,θsun)e−
∑N

1
τ0(ν,i)
µ

where typically ρ(ν)= (1−ε(ν))/π (Lambertian reflectance). The derivatives at each layer are
then added on to the jacobians above, given by

∂rref lected_solar(ν)
∂XJ

=−1
µ
τ0(ν,J)

∂τ0(ν,J)
∂XJ

rref lected_solar(ν)

Note we have assume ρ(ν) is the same for reflected thermal and for reflected solar; this is not
necessarily correct as eg sun glint would be almost mirror like.

6.4 NLTE

There is a correction term to the 4.3 um radiance due to NLTE in the upper atmosphere. It
currently depends only on the temperature of the top 5 layers, the satzen and solzen angles,
and CO2 gas amount (or more accurately, deviation from 385 ppm). This is modeled as

δrNLTE(ν)= (
6∑
j
Nj(ν)NLTE_PRED(j))(N7(co2ppm−385)+1)

The temperature dependence is only in predictor 5 via NLTE_PRED5 = 1/5(T1+T2+T3+T4+T5),
so

∂δrNLTE(ν)
∂Ti

=N5(0.2)(1)(N7(co2ppm−385)+1),i= 1,2,3,4,5

and can be trivially added on; similarly the CO2 gas amount jacobian can be done but it is
tiny (at least over about 50 ppmv changes).

6

7 Two slab clouds : weighted sum over four radiance streams

We use the PCLSAM parametrization for clouds and aerosols in SARTA and kCARTA (see
[De Souza-Machado et al., 2018, 2020]). Here the cloud scattering effects are re-parametrized
into an effective optical depth. It’s not as accurate as e.g.,DISORT [Stamnes et al., 1988] but its
fast and simple, and the accuracy can be improved [Tang et al., 2018]. All this means our final
radiation is

• a weighted sum over clear, cloud1 fraction, cloud 2 fraction, cloud 1+2 overlap

• more importantly, clouds 1 and 2 go into our atmosphere effectively as two additional
non-scattering “gases”; so their effects can be added in as an additional “fixed” gas.

All the above equations remain fundamentally unchanged, except we e.g.,increase the total
OD of layer(s) i1 by that of cloud 1, and the total OD of layer(s) i2 by that of cloud 2, while
doing the cloud1 only, cloud 2 only, and cloud 1+2 portions of the radiative transfer.

Then jacobians in our TwoSlab atmosphere, are simply done as above, but for each of the
four streams; and then just as final radiance is the weighted sum of the four radiance streams,
the final jacobian is the weighted sum of the four jacobians.

The rtp file allows us to have the following variables : (ctype1,cfrac1,cngwat1,csze1,cprtop1,
cprbot1),(ctype2,cfrac2,cngwat2,csze2,cprtop2, cprbot2),(cfrac12). Based on these, assuming
all the fractions are non-zero the code then defines cx1 = c1 - c12, cx2 = c2 - c12, fclr = 1 -
(c1x+c2x+c12) = 1 - (c1+c2-c12)

Then we find the radiance as

r(ν) = fclr rclr(ν) + c1x r1(ν) + c2x r2(ν) + c12 r12(ν)
= (1− (c1+c2−c12)) rclr(ν) + (c1−c12) r1(ν) + (c2−c12) r2(ν) + c12 r12(ν)

The PCLSAM effective nadir cloud optical depth [Chou et al., 1999] is given by

τcld(ν,sze,cng,θ= 0) = cng×
(
τ1g/m2
ext (ν,sze)− 1

2
τ1g/m2
sca (ν,sze)(1+g(ν,sze))

)
= cng×τ1g/m2(ν,sze,θ= 0)
= cng×f(ν,sze)

where cng is the cloud loading in g/m2, sze is effective particle diameter in um, g(ν) is the
asymmetry and ω= τsca(ν)/τext(ν)= (τext(ν)−τabs(ν))/τext(ν). The superscript 1g/m2
means everything has been saved/normalized to this cloud loading.

This means for example

1. the nadir cloud optical depth is related to cloud optical depth at angle θ by

τcld(ν,sze,cng,θ) = 1
cos(θ)

τcld(ν,sze,θ= 0)

= 1
µ
τcld(ν,sze,θ= 0)

7

2. the derivative with respect to cloud amount (ignoring angles) is trivially

∂τcld
∂cng

= τcld(ν)
cng

= τ1g/m2(ν,sze,θ= 0)= f(ν,sze)

3. the derivative with respect to cloud particle size is

∂τcld
∂sze

= cng×
(
∂τ1g/m2
ext (ν,sze)
∂dze

)
−

cng
2

(
∂τ1g/m2
sca (ν,sze)
∂dze

(1+g(ν,sze))
)
−

cng
2

(
τ1g/m2
sca (ν,sze)

∂g(ν,sze)
∂sze

)
)

= cng
∂f
∂sze

4. furthermore suppose the cloud is defined between cprtop mb and cprbot mb. Then it
typically straddles more than one layer. The (cloud loading cng) fraction in each layer L that
the cloud straddles is given by (exept at top most/bottom most cloud layer)

frccng(L)=
plev(L+1)−plev(L)
cprtop−cprbot ,LCLDTOP ≤ L≤ LCLDBOT

so that each layer has fraction frccng(L)τcld(ν,sze,θ) of the total cloud optical depth. The
derivatives of frccng(L) with respect to cprtop,cprbot are trivially (which of course means
its not so trivial and the jacs are awful)

∂frccng(L)
∂cprtop

= (−1)
plev(L+1)−plev(L)
(cprtop−cprbot)2 ×(+1);

∂frccng(L)
∂cprbot

= (−1)
plev(L+1)−plev(L)
(cprtop−cprbot)2 ×(−1);

(though compared to SARTA finite differences, the cprtop,cprbot derivatives are sometimes
off by -1 ... but this is probably due to finite difference perturbation in pressure ensuring cloud
top/bottom layer is slightly different.

5. This partitioning of the total cloud OD into the individual AIRS pressure layers according
to frccng(L) has couple of implications for the jacobians : for any one of the four streams
(clear, cloud1, cloud2, cloud1+2),

• to get the cpsize,cngwat column jacobian, we sum over each of the cloud layers (from LCTOP
to LCBOT) with the layer contribution weighted by frccng(L).

• to get the cprtop,cprbot parameters we need the the frccng(L) changes at each layer, and
so to get the column sum, we weight each layer by 1

8

7.1 Cloud Fraction jacs

From above, the jacobians wrt cloud fraction (ie a unity change!! pretty large!!!) are immediately

∂r(ν)
∂c1 = −rclr(ν)+r1(ν)
∂r(ν)
∂c2 = −rclr(ν)+r2(ν)
∂r(ν)
∂c12 = +rclr(ν)−r1(ν)−r2(ν)+r12(ν)

7.2 Cloud Amount and Cloud Particle Size jacs

As mentioned above our look-up tables are in terms of τcld(ν)= cldOD(ν)= cng f(ν,sze)
from which (and use the formulation above)

cldOD(ν) = cng f(ν,sze)
∂cldOD
∂sze = cng ∂f(ν,sze)∂sze
∂r(ν)
∂sze1 = ∂r1(ν)

∂sze1 +
∂r12(ν)
∂sze1

= ∂r1(ν,sze)
∂cldOD1

∂cldOD1
∂sze1 + ∂r12(ν)

∂cldOD1
∂cldOD1
∂sze1

= cng1
(
∂r1(ν,sze)
∂cldOD1

∂f1(ν,sze1)
∂sze1 + ∂r12(ν)

∂cldOD1
∂f1(ν,sze1)
∂sze1

)
∂r(ν)
∂sze2 = ∂r2(ν)

∂sze2 +
∂r12(ν)
∂sze2

= ∂r2(ν,sze)
∂cldOD2

∂cldOD2
∂sze2 + ∂r12(ν)

∂cldOD2
∂cldOD2
∂sze2

= cng2
(
∂r2(ν,sze)
∂cldOD2

∂f2(ν,sze2)
∂sze2 + ∂r12(ν)

∂cldOD2
∂f2(ν,sze2)
∂sze2

)
∂cldOD
∂cng = f(ν,sze)
∂r(ν)
∂cng1 = ∂r1(ν)

∂cng1 +
∂r12(ν)
∂cng1

= ∂r1(ν,cng)
∂cldOD1

∂cldOD1
∂cng1 + ∂r12(ν)

∂cldOD1
∂cldOD1
∂cng1

= ∂r1(ν,cng)
∂cldOD1 f1(ν,cng1)+ ∂r12(ν)

∂cldOD1f1(ν,sze1)
∂r(ν)
∂cng2 = ∂r2(ν)

∂cng2 +
∂r12(ν)
∂cng2

= ∂r2(ν,cng)
∂cldOD2

∂cldOD2
∂cng2 + ∂r12(ν)

∂cldOD2
∂cldOD2
∂cng2

= ∂r2(ν,cng)
∂cldOD2 f2(ν,cng2)+ ∂r12(ν)

∂cldOD2f2(ν,sze2)

7.3 Cloud Top and Cloud Bottom jacs

Scott has a cool way of implementing the cloud boundaries across pressure level boundaries
and so can occupy a fraction of an AIRS layer; kCARTA “fills” in AIRS pressure levels so the
cloud occupies one or more full pressure layers; all the cloud jacobian stuff I do for single
footprint retrievals, ensure that (a) cld1 bottom and cld2 top do not merge/overlap (b) cld1
top or cld2 top does not become less than 0 mb (c) cld1 bottom or cld2 bottom does not
become more than surf pres. But I did make a stab at it!!! Recall for any layer L the total
optical depth is given by

τtotal(T ,q1,q2,q3,,qfixed,cld1,cld2) = τ1(T ,q1)+τ2(T ,q2)+τ12(T ,q12)+
τcld1(cng1,sze1,cprtop1,cprbot1,species1)+
τcld2(cng2,sze2,cprtop2,cprbot2,species2)

which means (assuming variable we are interested in Xi is not the temperature T)

∂τtotal
∂Xi

= ∂τi
∂Xi

, i= q1,q2,q12,cld1params,cld2params

9

From above, we have cloud loading fractions frccng(L) and their derivatives, so in layer L

∂r(ν,L)
∂cprtop/bot

= ∂r(ν,L)
∂τtotal(ν)

∂τtotal(ν)
∂cprtop/bot

∂r(ν,L)
∂cprtop/bot

= ∂r(ν,L)
∂τtotal(ν)

∂τcld(ν)
∂cprtop/bot

∂r(ν,L)
∂cprtop/bot

=
(
µ
∂r(ν,L)
∂τtotal(ν)

)(
1
µ

∂τcld(ν)
∂cprtop/bot

)
∂r(ν,L)

∂cprtop/bot
= (−rL+BL)

(
1
µ

∂τcld(ν)
∂cprtop/bot

)

We know

τcld(ν,L)= frccng(L)τtotalcld (ν)= frccng(L)cng×τ1g/m2(ν,sze,θ= 0)

which means

∂τcld(ν)
∂frccng(L)

= cng×τ1g/m2(ν,sze,θ= 0)

∂τcld(ν)
∂cprtop

= ∂τcld(ν)
∂frccng(L)

∂frccng(L)
∂cprtop

∂τcld(ν)
∂cprbot

= ∂τcld(ν)
∂frccng(L)

∂frccng(L)
∂cprbot

and then we can use the same formulation as for T(z),G1(z), ... etc derivatives!!

8 Running SARTA Analytic Jacobian

This is very similar to running SARTA as usual, except there are couple additional command
line arguments, and you read in the output jacobians using Matlab. A typical run would be

[name of exec] fin=blah.op.rtp fout=blah.rad.rtp RADS ONLY
[name of exec] fin=blah.op.rtp fout=blah.rad.rtp listj=-1 RADS and JACS

8.1 Command Line arguments

Command line arguments include what Scott had e.g.,“rhot” with a couple new important ones;
run times change appropriately as you change any or all of num of chans/jacs/profiles

• listp = list of profiles [Scott had this]

– listp allows you to choose upto 20 profiles (default -1 = all, or just leave out this arg)

• listc = list of channels [new]

– listc allows you to choose upto 20 channel IDs e.g.,1291 for the 1231 cm=1, or 449 for
791 cm-1. (default -1 = all, or just leave out this arg)

• listj = list of jacobians [new]

10

– If you leave out listj, it does NO jacobians (ie radiance calcs) default

– If you want jacs, then listj = -1 gives WGT, T, GID 1,2,3,4,5,6,9,12 or listj = your list
e.g.,300,100,1,2,3 would give CLD, T and GID 1,2,3

9 Output readers

The main reader (in the MATLABCODE directory) is readsarta_jac.m and readsarta_jacV2.m.
The difference between the two is that the former outputs the jacobians as (numprof,numchan,X)
while the latter outputs the jacobians as (X,numchan,numprof) where X = 12,100,101 for
clouds, gases and temperature/surface temperature. In addition the readers ensure they out-
put reals (4 bytes) and not doubles (8 bytes).

Right now the default is to change ∂r(ν,TOA)∂TJ , ∂r(ν,TOA)∂QJ , ∂r(ν,TOA)∂CLDJ to ∂BT(ν,TOA)
∂TJ ,

QJ∂BT(ν,TOA)
∂QJ ,

CLDJ∂BT(ν,TOA)
∂CLDJ but this can easily be coded out. The output jac files (f77 binary files) would

have root name of fout, followed by _jacT or _jacGX or _jacCLD appended to them

Reader : /home/sergio/KCARTA/MATLAB/ or MATLABCODE
[w,d,iaProf,iaNumLay] = readsarta_jac(fname,type)
eg. ’newdayx.rtp_WGTFCN’,200 would read in weight functions

’newdayx,rtp_jacTZ’,100 temp jacs
’newdayx.rtp_jacG1,’,1 G1 jacs etc

For G1,G2, ... jacs (and weight functions) d would, for example, be
24x2645x100 (24 profiles, 2645 channels, 100 layers)

For T jacs, d would, for example, be
24x2645x101 (24 profiles, 2645 channels, 100 layers+surface temp)

For Cloud jacs, d would, for example, be
24x2645x012 (24 profiles, 2645 channels, 12 jacs)
01-05 : [cfrac1,cngwat1,cpsize1,cprtop1,cprbot1],
06-10 : [cfrac2,cngwat2,cpsize2,cprtop2,cprbot2],
11 : cfrac12
12 : stemp

If you do
[h,ha,p,pa] = rtpread(’blah.rad.rtp’);

then $w = h.vchan$ (ie the $h.vchan$ from the output radiance file)

iaProf lists the profiles you asked to calculate jacs for (from listp above), while iaNumLay is
basically (for WGT FCN and gas jacs) p.nlevs-1 for those profiles, and an extra one for stemp
for temp jacs (so has length p.nlevs)

10 The End (sort of)

Finite difference SARTA jacobians agree with kCARTA analytic jacobians except in the window
region, since kCARTA needs the cloud top and bottoms to be at pressure level boundaries, full
cloud layers while SARTA allows the top and bottom pressures to be “anywhere”.

The SARTA analytic jacobians have been compared to SARTA finite difference jacobians,
and kCARTA analytic jacobians. The agreement is very good, except sometimes the cprtop or

11

cprbot derivatives can be flipped by a sign since the finite difference jacobian straddles (or
loses) an additional cloud layer.

Figure 3 shows a typical comparison of SARTA analytic versus SARTA finite difference col-
umn jacobians.

Feel free to test and give feedback. Its a mix of old f77 SARTA code (the June 20, 2022
commit) first rewritten to loop over ichan) and then jacobians with f90 implicit loops. No
modules (yet, dunno if ever). If the incFTC/fnmie links are changed to CRIS or IASI (ie at the
command line, call the make -f CRIS or IASI) and the code re-compiled, it works for CRIS and
IASI as well. And fingers crossed the breakouts/predictors are kept the same forever ie never
ever change the bloody predictors. You can compare to finite diff jacs, done for only your
chosen profile, using /home/sergio/MATLABCODE_Git/quicksartajac.m (make sure the finite
diff jacobians use eg dQ=0.01 or dT = 0.1, else the numerical noise will creep in and ratios of
jacs will look awful).

The testing code wrappers which call both the finite difference jacobian code, and the ana-
lytic jacobian code, are in the MATLABCODE subdirectory, and have the names

test_jac_AIRS.m, test_jac_CRIS.m,test_jac_IASI.m

The results are of comparing eg

N∑
i=1

TZ(i)f inite(ν) to
N∑
i=1

TZ(i)analytic(ν)

N∑
i=1

G1(i)f inite(ν) to
N∑
i=1

G1(i)analytic(ν)

CldXfinite(ν) to CldXanalytic(ν)

etc should be great : the ratios should be very close to one and if plotted they should lie on
top of each other.

Run times for 12150 profiles/2645 AIRS channels is 4 minutes, while adding in all jacobians
and weighting functions (T jacs, G1,2,3,4,5,6,9,12 jacs) increases the run time by × 10. This is
compared to running SARTA over and over for about 10 extra perturbations × 100 layers to
get the corresponding finite difference jacobians, which is about 66 hours or about 2.75 days.

11 Acknowledgment

Scott Hannon wrote/developed most of the original SARTA code with Larrabee Strow and
Howard Motteler. He worked closely with me on the interfacing with TwoSlab clouds. To-
bias Wehr wrote parts of a HIRS Fast model analytic code and put that into a write up, which
inspired me to do this! Seeing Xu Liu’s expressions for PCRTM derivatives are a confirmation
that I was on the right track in “propagating the derivatives”.

12 Bibliography

Hartmut H. Aumann, S. DeSouza-Machado, S. Havemann, J. Vidot, M. Matricardi, X. Huang,
C. Wilson, Manning. E., G. Liuzzi, Masiello. G., C. Serio, I. Moradi, X. Liu, V. Natraj, Y. Yung,
X. Chen, A. Geer, L. Strow, and Fishbein. E. Evaluation of Radiative Transfer Models with
Clouds. J. Geophys. Res., 10:10.1029/2017JD028063, 2018.

12

Hartmut H. Aumann, C. Wilson, A. Geer, X. Huang, X. Chen, S. DeSouza-Machado, and X. Liu.
Global Evaluation of the Fidelity of Clouds in the ECMWF Integrated Forecast System. Earth
and Space Science, 10:doi: 10.1029/2022EA002652, 2023.

M.-D. Chou, K.-T. Lee, S.-C. Tsay, and Q. Fu. Parameterization for Cloud Longwave Scattering
for use in Atmospheric Models. J. Climate, 12:159–169, 1999.

S. De Souza-Machado, L. L. Strow, A. Tangborn, X. Huang, X. Chen, X. Liu, X. Wu, and
Q. Yang. Single-footprint retrievals for AIRS using a fast TwoSlab cloud-representation model
and the SARTA all-sky infrared radiative transfer algorithm. Atmos. Meas. Tech., 11:529–
550,https://doi.org/10.5194/amt–11–529–2018, 2018.

S. De Souza-Machado, L. L. Strow, H.E. Motteler, and S.E Hannon. kCARTA : A Fast
Pseudo Line by Line Radiative Transfer Algorithm with Analytic Jacobians, Fluxes, Non-
Local Thermodynamic Equilibrium and Scattering. Atmos. Meas. Tech., 31:323–339,
https://doi.org/10.5194/amt–13–323–2020, 2020.

R.M. Goody and Y.L. Yung. Atmospheric Radiation: Theoretical Basis, page 519 pages. Oxford
University Press, 1989.

K.N. Liou. An Introduction to Atmospheric Radiation, page 583 pages. Academic Press, 1980.

X. Liu, W.L Smith, D.K. Zhou, and A.M. Larar. Principal component based radiative transfer
model for hyperspectral sensors : theoretical concepts. Appl. Opt, 45:201–209, 2006.

L. M. McMillin, L. J. Crone, M. D. Goldberg, and T. J. Kleespies. Atmospheric transmittance of
an absorbing gas 4:OPTRAN: A computationally fast and accurate transmittance model for
absorbing gases with fixed and variable mixing ratios at variable viewing angles. Appl. Opt.,
34:6269–6274, 1995.

K. Stamnes, S.-C. Tsay, W. Wiscombe, and K. Jayaweera. Numerically stable algorithm for dis-
crete ordinate method radiative transfer in multiple scattering and emitting layered media.
Appl. Opt, 27:2502–2509, 1988.

L. Strow, S. Hannon, S. DeSouza-Machado, D. Tobin, and H Motteler. An overview of the AIRS
radiative transfer model. IEEE Transactions on Geosciences and Remote Sensing, 41:303–313,
2003.

G. Tang, P. Yang, G. W. Kattawar, X. Huang, E. J. Mlawer, B. A. Baum, and M. D. King. Improve-
ment of the simulation of cloud longwave scattering in broadband radiative transfer models.
J. Atmos. Sc.., 75:2217–2233, 2018.

13

NWP profile
read

profile info

initialze
calpar
1,2,3,4,5,6,7

initialze
caltod for

ALL chans
1,2,3,4,5,6,7

start
loop over
channel i

radtran
chan(i)

Figure 1: Flow diagram of SARTA PGE etc

14

NWP profile
read

profile info

initialize
calpar

1-7

initialize
jac(calpar)

1-7

start
loop over
channel i

initialze
caltod(i)

1-7

initialize
jac(caltod(i))

1-7

radtran
chan(i)

jac chan(i)

Figure 2: Flow diagram of SARTA Analytic Jacobian

15

Figure 3: Comparison of SARTA finite diff VS analytic column jacobians

16

	Introduction
	SARTA original flow
	SARTA analytic jacobian flow
	The Analytic Derivatives of the Predictors
	``Simply'' the derivative
	Not so ``Simply'' the derivative
	OPTRAN

	Propagating analytic derivatives from layer j to TOA
	Derivatives for one layer
	Derivatives for one layer at TOA

	Various : surface and background thermal and solar contribution and NLTE
	Surface
	Background thermal
	Solar
	NLTE

	Two slab clouds : weighted sum over four radiance streams
	Cloud Fraction jacs
	Cloud Amount and Cloud Particle Size jacs
	Cloud Top and Cloud Bottom jacs

	Running SARTA Analytic Jacobian
	Command Line arguments

	Output readers
	The End (sort of)
	Acknowledgment
	Bibliography

