
UMBC LBL vers 7: An Algorithm to
Compute Line-by-Line Spectra

Sergio De Souza-Machado, L. Larrabee Strow,
David Tobin, Howard Motteler and Scott Hannon

Physics Department
University of Maryland Baltimore County

Baltimore, MD 21250 USA

Copyright 1999
University of Maryland Baltimore County

All Rights Reserved
v6 May 19, 2008

Sergio De Souza-Machado: sergio@umbc.edu
L. Larrabee Strow: strow@umbc.edu



DRAFT UMBC LBL Version 7

Contents

1 Introduction 6

2 General algorithm to compute optical depth 8
2.1 Computing water vapor absorption coefficients . . . . . . . . . . . . . . 13
2.2 Computing carbon dioxide absorption coefficients . . . . . . . . . . . . . 14

2.2.1 Line Mixing : probability of mixing (parameter β) . . . . . . . . 14
2.2.2 Determining the Interaction Matrix W . . . . . . . . . . . . . . 16
2.2.3 Duration of collisions : Birnbaum chi function (τ parameter) . . 17
2.2.4 Combined Line-Mixing and Duration-of-Collision Lineshape . . . 18

2.3 Cousin versus Birnbaum chi functions . . . . . . . . . . . . . . . . . . . 18
2.4 Computing the line-mixing lineshape . . . . . . . . . . . . . . . . . . . . 19

2.4.1 Loading in line parameters, storing β, τ . . . . . . . . . . . . . . 19
2.4.2 Computing lower state rotational energies Elower . . . . . . . . . 20
2.4.3 Computing relaxation matrix K using PEG law . . . . . . . . . . 20
2.4.4 Computing the interaction matrix W . . . . . . . . . . . . . . . 22
2.4.5 Computing the transition population amplitudes . . . . . . . . . 22
2.4.6 Computing the full mixing lineshape . . . . . . . . . . . . . . . . 24
2.4.7 Computing the first order mixing lineshape . . . . . . . . . . . . 25

2.5 Implementing the line mixing/duration of collision algorithm . . . . . . 25

3 run6 28
3.1 input units for run6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Mex files and HITRAN database . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Water, nitrogen, oxygen continuum . . . . . . . . . . . . . . . . . . . . . 29
3.4 run6.m input parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 run7.m input parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6 Detailed description of the input parameters . . . . . . . . . . . . . . . . 31
3.7 Detailed description of the output parameters . . . . . . . . . . . . . . . 33
3.8 Outline of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 run6water 36
4.1 run6water.m input parameters . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 run7water.m input parameters . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Detailed description of the input parameters . . . . . . . . . . . . . . . . 39

5 run6watercontinuum 40
5.1 run6watercontinuum.m input parameters . . . . . . . . . . . . . . . . . 40
5.2 run7watercontinuum.m input parameters . . . . . . . . . . . . . . . . . 41
5.3 Detailed description of the input parameters . . . . . . . . . . . . . . . . 42

UMBC 2



DRAFT UMBC LBL Version 7

6 run6co2 42
6.1 run6co2.m input parameters . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 run7co2.m input parameters . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.3 Detailed description of the input parameters . . . . . . . . . . . . . . . . 45
6.4 Outline of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.5 Band details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.6 PQR sigpi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.7 PQR deltpi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.8 PR sigsig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.9 PR pipi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.10 PR deltdelt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7 General Spectral Lineshape Theory 54
7.1 Molecular Absorption and Beer’s Law . . . . . . . . . . . . . . . . . . . 54
7.2 Line Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.2.1 Line Centers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.2.2 Line Strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.2.3 Line Widths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.3 Lineshape Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.3.1 Natural Broadening . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.3.2 Doppler Broadening . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.3.3 Collision Broadening . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.3.4 Lorentz Lineshape . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.3.5 Van Vleck - Weisskopf Lineshape . . . . . . . . . . . . . . . . . . 65
7.3.6 Van Vleck - Huber Lineshape . . . . . . . . . . . . . . . . . . . 66
7.3.7 Voigt Lineshape . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.3.8 General Techniques for Calculating Collisional Lineshapes . . . 66

8 Water vapor lineshape 67
8.1 A Definition of the Continuum . . . . . . . . . . . . . . . . . . . . . . . 68
8.2 Laboratory Measurements of Burch et.al. . . . . . . . . . . . . . . . . . 70
8.3 Clough’s CKD Continuum Models . . . . . . . . . . . . . . . . . . . . . 72
8.4 Recent Field Measurements . . . . . . . . . . . . . . . . . . . . . . . . . 79

9 Carbon dioxide lineshape 79
9.1 Line Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
9.2 Duration-of-Collision Effects . . . . . . . . . . . . . . . . . . . . . . . . . 86
9.3 Combined Line-Mixing and Duration-of-Collision Lineshape . . . . . . . 89
.1 qfcn.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
.2 broad.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

UMBC 3



DRAFT UMBC LBL Version 7

.3 findstren.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

List of Tables

List of Figures

1 Computing absorption spectra . . . . . . . . . . . . . . . . . . . . . . . 10
2 Rotational relaxation rates, Kj′j , for several Q-branch lines of a Σ ← Π

transition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3 Cartoon of Parameter Relations . . . . . . . . . . . . . . . . . . . . . . . 34
4 Outline of initialization algorithm . . . . . . . . . . . . . . . . . . . . . . 36
5 Outline of loops over layers and fine,medium,coarse meshes . . . . . . . 37
6 Outline of initialization algorithm for CO2 . . . . . . . . . . . . . . . . . 46
7 Outline of PQR band loop details for CO2 . . . . . . . . . . . . . . . . . 48
8 Core PQR band details for CO2 . . . . . . . . . . . . . . . . . . . . . . 51
9 An illustration of Beer’s law. . . . . . . . . . . . . . . . . . . . . . . . . 55
10 A spectral line depicting the line center and line width. . . . . . . . . . 57
11 The local lineshape definition. . . . . . . . . . . . . . . . . . . . . . . . . 69
12 Lorentz calculations for 0-4000 cm−1. . . . . . . . . . . . . . . . . . . . . 71
13 Burch’s measurements of C0

s , the self-broadened continuum coefficients,
and impact theory calculations from 0 to 3000 cm−1. . . . . . . . . . . . 73

14 Burch’s measurements of C0
f , the nitrogen broadened continuum coeffi-

cients, and impact theory calculations from 0 to 3000 cm−1. . . . . . . . 74
15 Self-broadened continuum coefficients of Ma and Tipping, Burch and

Clough. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
16 Nitrogen-broadened continuum coefficients of Ma and Tipping, Burch

and Clough. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
17 Far-wing, near-wing, and basement contributions to the total continuum. 78
18 Nitrogen broadened continuum coefficients reported by Theriault. . . . . 80
19 Illustration of the Lorentz and finite duration-of-collision models of the

time development of the dipole moment autocorrelation function and the
resulting lineshapes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

20 Ratios of the line-mixing, duration-of-collision, and combined absorption
coefficients to Lorentz for the fundamental ν3 R-branch . . . . . . . . . 90

UMBC 4



DRAFT UMBC LBL Version 7

ABSTRACT

We have developed a line-by-line code to compute the spectral lineshapes of gases
under varying pressure and temperatures. This code can use the spectral line parameters
of a variety of databases such as HITRAN or GEISA. The code ensures that the same
lines are used in all layers of an atmosphere, so that the resulting line profiles are smooth.
The latest models for CO2 line mixing and in water vapor lineshapes are incorporated
in the code. The code is can be used to compute absorption spectra at user specified
resolutions, using one of various lineshapes. One of our uses for the code is to generate
new versions of the spectroscopic database for kCARTA, which is the reference for the
AIRS forward model.

This document is very much a work in progress. Some major omissions include
references, significant examples of output, and comparisons of output to GENLN2.
These omissions will be rectified in the future. Please give us your feedback on both
the code and the documentation!
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1 Introduction

This documentation describes a line-by-line code that can be used to compute optical
depths for various gases (that appear in the HITRAN database). The code has been
written in Matlab, with many of the routines written as FORTRAN-MEX files in the
interests of speed. The lineshape database that is used in the computations, is cur-
rently the HITRAN98 database. Other databases, such as the GEISA or HITRAN92
databases, can be merged in and used. With this, we can incorporate the latest lineshape
studies and parameters into our computations.

This code will be used to generate a new database for kCARTA, our radiative transfer
algorithm that is the reference for the AIRS forward model. AIRS is a high resolution
infrared instrument due to be launched by NASA in the year 2000. The instrument
will be used to make measurements of the gas content and temperatures of the Earth’s
atmosphere, as well as study the global climate and weather.

For all gases except carbon dioxide and water vapor, the lineshapes of the individual
lines are simply added together to give the overall absorption spectrum. To speed things
up, the code uses the binning methods of GENLN2, where the lines are divided into
near lines, medium-far lines and far lines. The general code to compute the lineshape
of this majority of gases is called run6.m Note that we also have code to incorporate
the computation of the lineshapes of the cross section gases as well.

For the case of carbon dioxide, we have utilised Dave Tobin’s work on linemixing
and duration of collisions effects in the 4 µm band, and applied it to the 15 µm band
as well. The code to compute the lineshape of carbon dioxide is called run6co2.m

For the case of water vapor, we have written two source codes. run6water.m can
compute the spectral lineshapes with or without the basement term removed, and add
on the user specified continuum (CKD 0,2.1,2.3 or 2.4). In addition, this code also in-
cludes Tobin’s work on water vapor chi functions. We also have a specialised continuum
code run6watercontinuum.m that can output one of the following (a) the completely
computed water continuum (b) the self continuum coefficients (c) the foreign continuum
coefficients or (d) combinations of the above three.

We begin the documentation by briefly describing how our code computes an optical
depths, given the necessary input parameters. This section is divided into three; the
first can be used for all gases, while the second and third apply to water vapor and
carbon dioxide respectively.

The next sections describe the UMBC LBL Version 6 code implemetation. A sec-
tion on the basic code for most gases, run6.m is then followed by section on run6water(continuum).m
and run6co2.m. We have improved upon Version 6 by defaulting most parameters to a
set of values that are usually used; if the user wants to change these settings, he/she can
send in the new value(s) by using a Matlab structure. This will be the UMBC LBL
Version 7 implementation. All the basic physics is the same as version 6.
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Theis is followed by sections which describe spectral lineshapes in detail. First is
a section on general spectral lineshape theory, where the meaning of terms such as
line widths and line broadening is explained. Next are two sections, one on computing
water vapor spectra and the other computing carbon dixide spectra. As mentioned in
the previous paragraphs, to accurately compute the absorption spectra of these two
gases, one needs to use more involved lineshape theories than those for other gases.
This is particularly important as these two gases are actively important in the infrared
portion of the radiation emitted by the Earth, and so a thorough understanding of their
spectra would be beneficial to the remote sensing community.

Finally, a short set of appendices briefly describe the general code to compute par-
tition functions, line widths and line strengths.
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2 General algorithm to compute optical depth

Assume the user wants the optical depth to be computed for a certain gas, using known
parameters. These parameters are the total pressure P , partial (self) pressure PS,
temperature T and gas amount (column density) U . The gas amount U is related to
self pressure, temperature, path cell length (or atmospheric layer thickness) L by the
equation

U =
CF × L× PS

R× T

where R is the molar gas constant (8.31 J/mol/K), P, PS are the total and partial
pressures in atmospheres (only partial pressure is relevant for gas amount), T is the
temperature in Kelvin, and L is the path length in cm. CF is a units conversion factor
of1.01325× 10−4 to give us U in units of kiloMoles/cm2. This equation uses the Ideal
Gas Law to calculate molecular density for a unit volume, and then multiplies the
density by the path length L to convert density to column density (gas amount).

Knowing for what gas the spectrum is to be computed, and within which frequency
interval, the lineshape parameters for that gas need to be read in. These parameters
can be obtained from a database such as HITRAN98, and should include the following
:

TYPE DESCRIPTION USE
gasid input HITRAN GasID 1=water,2=CO2, etc
iso list of isotopes 1=most abundant,2=next ...
linct number of lines in wavenumber interval
wnum wavenumbers of the line centers [cm−1] ν0(1), ν0(2), ...
tsp line center shift due to pressure P [cm-1/atm] ν0(j)→ ν0(j) + P × tsp(j)
stren line strengths (See Eqn 26) S(T ) ' S(296)Z(296)/Z(T )× ρ

[cm−1/(moleculescm−2)] Z are partition functions (Eqn 21)
ρ ' upper/lower state populations

abroad air broadened half widths HWHM [cm−1/atm] brdair = (P − PS)× abroad
sbroad self broadened half widths HWHM [cm−1/atm] brdself = (PS)× sbroad
abcoef temperature dependence of air brd = brdair + brdself

broadened half width brd→ brd× (296/T )abcoef

tprob transition probabilility [debyes2]
els lower state energy [cm−1] computing S(T)
usgq Upper state global quanta index identifying
lsgq Lower state global quanta index P,Q,R branches
uslq Upper State local quanta local quantum numbers
bslq Lower State local quanta local quantum numbers

UMBC 8
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ai accuracy indices
ref lookup for references

Note that the stren parameter is used in units of cm−1/(moleculescm−2) while
the gas amounts U are in units of kiloMoles/cm2. To get absorption coefficients and
optical depths that are in the correct units, the program eventually multiplies stren
by 6.023× 1026, which is the number of molecules per kilomole (ie Avagadro’s Number
times 1000).

Having read in these parameters, the code is almost ready to proceed with the
computations. Before this, it needs to read in the mass of each of the isotopes of the
current gas. In addition, it needs to compute the partition function Z, and thus it needs
four parameters a, b, c, d for each isotope (refer to Eqn 21). For the current temperature
T , Z(T ) is then readily computed as :

Z(T ) = a + bT + cT 2 + dT 3

The partition function is used when computing the line strength, as that term is pro-
portional to the relative populations of the lower and upper levels of the transition.

Using parameter tsp, any shift of the line centers due to the total pressure is then
computed, giving the adjusted line centers

ν0(P ) = ν0 + P × tsp(j)

The broadening of each line, due to the self component and the foreign component,
is then computed.

brdair = (P − PS)× abroad

brdself = (PS)× sbroad

brd = brdair + brdself

brd→ brd× (296/T )abcoef

With the above information for each line having been determined, the absorption
coefficients for the individual lines can now be computed, using the required lineshape
(Lorentz, Doppler, Voigt, etc). Looking at the simplest lineshape equation, the Lorentz
lineshape is given by

kL(ν) =
1
π

(
γL

(ν − ν0)2 + γ2
L

)
where γL is the linewidth and ν, ν0 are the wavenumber and line center frequency re-
spectively. This means the units that result from a lineshape computation is cm
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The final term required to compute the absorption spectrum is the line strength
associated with each line. In the equation below, Si(Tref ) is the line strength at the
HITRAN reference temperature of Tref = 296K, Ei is the lower state energy (given by
els) and νi is the line center wavenumber :

Si(T ) = Si(Tref )
Z(Tref )
Z(T )

exp(−hcEi/kT )
exp(−hcEi/kTref )

[1− exp(−hcνi/kT )]
[1− exp(−hcνi/kTref )]

With Si being in units of cm−1/(moleculescm−2), when this mutliplies the lineshape,
the final abosrption coeficient units are 1/(moleculescm−2)

By summing over the individual lines, the absorption spectra can be computed.
However, for purposes of radiative transfer in the atmosphere, it is more convenient
to think in terms of optical depths (and transmittances) instead of absorption spectra.
With this in mind, and to get the units right, the adjusted line strength is simply multi-
plied by the gas amount times number of molecules per kilomole : U(kiloMoles/cm2)×
6.023×1026(molecules/kiloMoles), from which the optical depth of the line (in dimen-
sionless units) can be computed. By summing over all the individual optical depths,
the total optical depth can be computed :

kopticaldepth
i (ν, ν0) = Si(T )× U × 6.023E26 × LineShape(P, PS, T, ν0(i), γ(i),mass(i))

k(ν)opticaldepth =
∑

i

kopticaldepth
i (ν, ν0)

Figure 1: Flow diagram to compute k(ν)

The actual steps described above are summarized in Fig. 1. In the case of water
vapor and carbon dioxide, the spectral lineshape that is used for each line can be more
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complicated than a simple lorentz or voigt shape. This will be discussed in more detail
later. For now, let us obtain some order of magnitude estimates for the optical depths
of some of the gases in the atmosphere. The gas amounts U come from the AIRS layers.
Assume the temperature T is 296 K, so all temperature effects are unimportant. Here
we use units η = molecules/cm2 for gas amounts U . Following are typical line paramter
values obtained from the HITRAN database, in the regions where the optical depths
for the individual gases peak in the atmosphere :

gas wavenumber abroad sbroad S U mix ratio
cm−1 cm−1/atm cm−1/atm cm−1/η η %

water 1500 0.08 0.4 2E-19 5.6E+21 0.77
CO2 2400 0.08 0.1 4E-18 2.2E+20 0.0036
N2 2400 0.05 0.05 4E-28 4.8E+23 78.1
CH4 1320 0.06 0.09 1E-19 1.0E+18 0.00017

The amount of water vapor in the atmosphere varies greatly both in time and space.
The mixing ratio of water near the surface might be anywhere between 0.01% and 4%.
The amount of CO2 and N2 varies by only a few percent, while CH4 may vary by a
factor of two. Note that due to the size and range of variation of the water mixing ratio,
as well as the lage difference between air- and self- broadened widths, that the total
line widths can vary by upwards of 15amount of water in the atmosphere. That is, the
widths of water lines in a dry atmosphere will be noticeably narrower than the widths
in a wet atmosphere. This is not true for any of the other important atmospheric gases;
their widths are nearly constant. This is because either their mixing ratio is relatively
constant, very tiny, or their air- and self-broadened widths are very similar.

The peak absorption coefficent in the lower atmosphere is approximately given by
S/(π × γ) where γ is the linewidth computed from the self and foreign broadening.
Using the values in the previous table, we get the following estimates for the optical
depths in the lowest 200 meters of the atmosphere :

gas total P self P γ peak abs peak optical
atm atm [cm−1] [1/η] depth

water 1.0 9.8E-3 8.8E-2 7.2E-19 4000
CO2 1.0 3.4E-7 8.5E-2 1.5E-17 3000
N2 1.0 8.4E-1 5.5E-2 2.3E-27 0.001
CH4 1.0 1.8E-6 6.4E-2 4.9E-19 0.5

One immediately sees that methane and nitrogen have much smaller peak optical
depths than water or carbon dioxide. Most of the other gases in the atmosphere also
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have maximum optical depths of less than one. Remember that when the spectra are
actually computed, there is a sum over the individual lines, so the peak values in the
table above are slight underestimates. In addition, the above table is only for the lowest
200m meters of the atmosphere; the total surface-to-space optical depths are typically
50 times larger.

Using typical values from the table above (which use parameters for the lowest layer
in the atmosphere), the absorption due to an individual line has decayed by γ

252+γ2 / γ
γ2 '

10−5 by the time it is 25cm−1 away from line center. For most gases except H2O
and CO2, this 25cm−1 distance may be used a safe cutoff limit beyond which the
contribution of an individual line to the overall spectrum can be considered negligible.
The large optical depth of the strong CO2 and water lines means we must go a couple
hundred wavenumbers into the wing before the optical depth drops off to a negligible
level!

To speed up the code while maintaining accuracy, our algorithm uses a variant of
the GENLN2 method of binning the lines while computing the spectra. To compute the
absorption spectrum in the chosen interval, the code divides up the interval into bins of
width fstep ' 1cm−1. It then loops through these bins, computing the overall spectra
in each bin using three stages. To reinforce the ideas, actual example numbers will be
used. Suppose the wavenumber interval being considered is 1005 - 1030 cm−1. There
are 25 bins of width ffin = 1cm−1 in this interval. Suppose we are considering the 4th
bin, which is the bin spanning 1008 to 1009 cm−1.

• (a) fine mesh stage : lines that are ±xnear ' 1cm−1 on either side of the edges
of this bin, are used in computing the overall lineshape at this stage, at a very
fine resolution of ffin ' 0.0005cm−1. The results of this computation are then
boxcar averaged to the output resolution nbox× ffin ' 0.0025cm−1

Thus the lines that are used in this stage have their centers spanning 1007 to 1010
cm−1.

• (b) medium mesh stage : lines that are an additional xmed − xnear ' (2 − 1) =
1cm−1 on either side of the edges of this bin, are now used in computing the
overall lineshape, at a medium resolution of fmed ' 0.1cm−1. The results of
this computation are then splined onto the output resolution and added onto the
running sum from above. Thus the lines that are used in this stage have their
centers spanning (1006,1007) and (1010,1011) cm−1.

• (b) coarse mesh stage : lines that are an additional xfar − xmed ' (25 − 2) =
23cm−1 on either side of the edges of the medium meshes, are now used in com-
puting the overall lineshape, at a coarse resolution of fcor ' 0.5cm−1. The results
of this computation are then splined onto the output resolution and added onto
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the running sum from above. Thus the lines that are used in this stage have their
centers spanning (983,1006) and (1011,1034) cm−1.

The speed up in the code is gained by computing contributions at the medium and
coarse resoutions as much as possible, instead of using the fine resolution grid all the
time.

As was pointed out above, the strengths of some of the lines sometimes sometimes
make it necessary to use lines that could be upto 200 cm−1 away (in the coarse part of
the computation). Instead of doing this, a common practice is to remain with the 25
cm−1 width of the coarse meshes, but include the effects of lines outside these coarse
mesh by adding on an extra continuum. This is true for oxygen and nitrogen, and
in particular water vapor (see below). Carbon dioxide also requires this; however we
choose not to use the continuum in this case, but simply use the entire 200 cm−1 wide
coarse meshes.

Carbon dioxide, like water vapor, is radiatively active in the Earth’s atmosphere.
Just like water, it is important to accurately compute the absorption spectra using
the correct lineshape, as optical depths of these gases vary greately in the atmosphere,
allowing one to probe several layers of the atmosphere within a small spectral region.
A thorough understanding of the absorption spectra of these two gases is therefore very
important for the remote sensing community.

2.1 Computing water vapor absorption coefficients

Almost all that has been said above remains valid when computing the lineshape of water
vapor. However, the lineshape far away from line center is sub-Lorentz (k/klor ≤ 1),
while the lineshape close to line center is super Lorentz (k/klor ≥ 1). To account for this
behavior, the above algorithm has to be slightly modified. This leads to the water vapor
lineshape algorithm to include the following three different modifications, put together
:

• Instead of using a lorentz lineshape, a local lineshape is used. Upto 25 cm−1 away
from line cenetr, this is defined as lorentz less the lorentz value 25cm−1, and zero
everywhere else.

• To include the super Lorentz behavior close to the line center, the local lineshape
is then multiplied by a chi (χ) function

• To include the sub Lorentz behavior far from the line center, a continuum function
is then added on. This is done after the effects of all lines have been used. Another
way of thinking of this continuum is to say that the water lines are quite strong, and
thus the computational algorithm should not restricted to using only lines that are
at most 25 cm−1 wavenumbers away from the spectral region under consideration.
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But instead of individually using lines that could be upto 200 cm−1 away (and
modelling their sub Lorentz far wing behavior), the far wing effects of these far
lines are all lumped into the continuum.

To summarize, when computing a water vapor optical depth, the code proceeds as
in the general case described above, except that it uses a local lineshape for each line j,
multiplied by a χ function. After all the necessary lines have been included, a continuum
absorption coefficient is also added on :

k(ν) = kcontinuum(ν) +
∑
j

klocal(ν, νj)χ(ν)

which can be rewritten, for the individual lines j

klocal(ν, νj) =

{
(klorentz(ν, νj)− klorentz(ν, 25 + νj))χ(ν) if |∆ν| ≤ 25cm−1

0 if |∆ν| > 25cm−1

where appropriate factors of ν tanh (βν/2) multiply the above coefficients.
The computation for klocal proceeds as described in the previous section, viz. using

fine, medium and coarse meshes.

2.2 Computing carbon dioxide absorption coefficients

Computing the spectral lineshape of carbon dioxide can be quite complicated. There
are many bands within which there are lines that are very closely spaced. Collisions
have the effect of mixing these lines together, transferring intensity from the line wings
to the line centers. Furthermore, the collisions are not instantaneous, but have a finite
duration. This also makes the lineshape deviate from Lorentz, especially far from the
line centers. Additionally, some of the bands are very strong and have an effect on the
absorption spectrum, at quite large distances from their band (line) centers. This third
effect can be accounted for by either using a continuum, or by allowing the inclusion of
effects of lines that are upto 200 cm−1 away from the region of interest.

2.2.1 Line Mixing : probability of mixing (parameter β)

Deviations from the Lorentz lineshape in regions of overlapping spectral lines have
been observed in many cases. In particular, large deviations are found in infrared Q-
branches, where the spectral lines are very closely spaced. Theories that treat the
collisions between molecules as instantaneous will be accurate only in spectral regions
close to the line centers.

Within an ensemble of colliding molecules, the Hamiltonian of a single molecule is
not a conservative system. The total Hamiltonian of the molecule is given by H(t) =
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H0(t)+H1(t). In this expression, H0(t) is the Hamiltonian of the molecule without any
interaction with its perturbers. H0(t) therefore has real eigenvalues and its eigenvectors
are the stationary states of the molecule. H1(t) is the Hamiltonian representing the
interaction of the molecule with its perturbers, such as the effects of inelastic collisions.
In the context of line mixing of a band, the eigenvalues of H0(t) give the energies (line
centers) of the individual transitions within a band.

For a given band, if the off-diagonal elements of H1 are zero, the lineshape that
results is a sum of individual Lorentzians : the model obeys the impact approxima-
tion. The role of the off-diagonal elements of the interaction potential is the interaction
between spectral transitions. If these off-diagonal elements of H1 are non-zero, inten-
sity can be transferred from one line to another, with the “amount” of line-mixing
determined by the magnitude of the corresponding off-diagonal element of H1. These
elements are proprtional to the probability β that spectral intensity is transferred from
one line to another. If β = 0, there is no line mixing and the lineshape that results
is Lorentzian; if β 6= 0, there is line mixing, and the lineshape deviates from a sum of
Lorentzians.

Calculating an absorption coefficient for many transitions over a large spectral range
is computationally most efficiently performed using

kmix(ν) =
N

π
IM

(
d ·G(ν)−1 · ρ · d

)
where G = ν−H and H = ν0+ıPW, where ν0 are the eigenvalues of H0 and H1 = ıPW
where P is the pressure and ıW is the interaction matrix.

H is diagonalized with a complex matrix A to get the diagonal matrix L = A−1 ·
H ·A. G is also diagonalized by A and kmix(ν) is written as

kmix(ν) =
N

π
IM

(∑
i

(d ·A)i(A−1 · ρ · d)i

ν − li

)

where li are the diagonal elements of L.
Using time-independent perturbation theory, Rosenkranz found the first-order ap-

proximation for kmix(ν) to be

k1st(ν) =
N

π

∑
j

Sj

(
Pγj + (ν − νj)PYj

(ν − νj)2 + (Pγj)2

)
with Yj = 2

∑
k 6=j

dk

dj

Wkj

νj − νk

where Yj are first-order mixing coefficients. For a single transition, this lineshape is the
sum of a Lorentzian and an asymmetric term. Far from the line centers, the asymmetric
terms become proportional to ν−1. In order for k1st(ν) to go to zero in these regions,
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the sum of the coefficients must vanish. That is, detailed balance must be obeyed. In
this context, Strow and Reuter[1] showed that detailed balance is obeyed if∑

j

SjYj = 0.

They used this result to show that, in the far-wing limit, the ratio of mixing and Lorentz
absorption coefficients is a constant[1]

Ω =
k1st

kL
= 1 +

∑
j SjYjνj∑
j Sjγj

This is a useful result because it allows the mixing lineshape to be calculated by simply
multiplying the Lorentz lineshape by a constant in the far wing. Note that the constant
Ω depends on the band, as well as on the pressure and temperature. However, as the
interaction matrix Wjj′ has to be computed in each case, it is easy to obtain the mixing
coefficients Yj and transition amplitudes dj , from which Ω can be computed.

The only point left to be addressed is the determination of the off-diagonal, or
mixing, terms of W. This will be described in more detail below.

2.2.2 Determining the Interaction Matrix W

Empirical scaling laws based on energy changes caused by inelastic collisions are often
used to model the interactions. The PEG law models the energetically upward state-to-
state inelastic collisional rates as a function of the rotational energy difference, ∆Ej′j .
An upward rate going from the state j to state j′ is modeled as

Kj′j = a1

( | ∆Ej′j |
B0

)−a2

exp
(−a3 | ∆Ej′j |

kT

)
where B0 is the rotational constant and a1, a2, and a3 are adjustable parameters which
are discussed below.

Detailed balance is obeyed if

Kjj′(2j′ + 1)e−
Ej′
kT = Kj′j(2j + 1)e−

Ej
kT

This relation essentially ensures that energy is conserved and gives the downward rates,
Kjj′ :

Kjj′ = Kj′j
2j + 1
2j′ + 1

e
∆E
kT

a1, a2, and a3 above are determined by equating the width of a spectral line to the
sum of all of the rates which limit the lifetime of that transition via a least-square fit
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to the known linewidths, as any rates which shorten the molecule’s lifetime in a specific
energy state broadens the spectral line. These rates include all of those which occur in
either the lower or upper state of the transition. Since vibrational energies are much
greater than rotational energies, only collisions between states within the same vibra-
tional level are considered. Therefore, using line widths extracted from experimental
data, a1, a2, and a3 are determined by requiring

γj ≡Wjj =
∑
j′ 6=j

All Kj′j which limit the transition lifetime.

The details of the exact expression used in calculations depend on the type of transition
which is occurring, such as Q branch mixing for a Σ−Π transition.

The off-diagonal elements of the matrix W are then taken to be proportional to
the corresponding collisional rates of the matrix K. These are the mixing terms. For
two rotational levels which are energetically close, the collisional rate between them
is relatively large and they experience mixing. On the other hand, if two levels are
energetically far from each other, the corresponding K rates are negligible and no mixing
occurs.

Summarizing the calculational procedures, the relaxation rates, Kjj′ , are first de-
termined by adjusting a1, a2, and a3 so that the sum of all relaxation rates which limit
the lifetime of a transition equals the known line width. The off-diagonal elements of
W are then taken to be proportional to the corresponding off-diagonal elements of K.
The details of this step depend on the symmetry of the band.

The diagonal elements of W are equated to the line widths. The absorption coeffi-
cients are then calculated using full or first order mixing.

2.2.3 Duration of collisions : Birnbaum chi function (τ parameter)

The Lorentz model ignores the effects of finite durations of collisions, and so has a
larger intensity far from line center than that actually measured. To account for the
finite duration of collisions, Birnbaum developed a theory which resulted the lineshape
being described by a chi function mutiplying the Lorentz lineshape (see Eqn. 68

kB(ν) = kL(ν)χB(ν) = kL(ν)AmzK1(z) exp (τγ + τ0∆ν)

with
z =

√
(γ2 + ∆ν2)(τ2

0 + τ2) and ∆ν = ν − νj

where K1(z) is a modified Bessel function of the second kind, τ0 = 0.72
T

1, and Am is an
adjustible constant (set to 1.0 in the code). T is the temperature, γ the linewidth and
and τ is the duration of collision parameter.

1τ0 and τ have been converted to units of cm by multiplication by 2πc.
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This “corrective” factor, χB(ν, γ, τ0(T ), τ), removes much of the far-wing absorption
of the impact approximation for the Lorentz line shape. For the parameters used in the
code (Earth atmosphere), χB is only very weakly dependent on the linewidth γ. When
computing the Birnbaum function, our code uses a look up table to do an interpolation
in temperature/duration-of-collision.

2.2.4 Combined Line-Mixing and Duration-of-Collision Lineshape

Both line-mixing and the duration-of-collision effect have shown to reduce the amount
of absorption in the far-wing limit. Since the line-mixing theory is valid only under
the impact approximation, the combined effects of line-mixing and duration-of-collision
are approximated as if each effect were independent. In order to include the effects of
line-mixing over the entire frequency range, we have

k(ν) =
∑

i

k1st(νi, ν)χB(νi, ν)

Note that this lineshape is parameterised by only two parameters : β which is the
probability that a collision will transfer intensity from one transition to another, and τ
which is the duration of collisions parameter.

if the first-order approximation is too inaccurate (which is seldom true for atmo-
spheric applications), the full line-mixing lineshape kmix(ν) can also be implemented by
using

k(ν) =
kmix(ν)∑

i kLor(νi, ν)

∑
i

kLor(νi, ν)χB(νi, ν)

However, all of our data fits were performed using the previous expression, which we
have chosen to remain with. The two expressions are not interchangeable ie parameters
obtained from a fit using the first expression cannot be used in the second expression.

2.3 Cousin versus Birnbaum chi functions

To model the CO2 spectrum in the 4 µm region, Cousin developed a set of empirical
chi functions, with many parameters to account for varying temperatures, broadeners
and so on. Multiplying the Lorentz lineshape with the suitable Cousin chi function
can model the experimental spectrum, epsecially far away from band center and for
low optical depths. The Cousin chi functions combine the physics of line mixing and
finite duration of collisions. However, these Cousin functions are also used in the 15
µm region of CO2 as well. As mentioned above, the β factor in this region is 0.5,
about half that in the 4 µm region. Thus it is incorrect to use the Cousin functions in
the 15 µm region. There will be too much intensity transferred to line centers, which
means the absorption in between lines is too weak, leading to lower optical depths and
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higher transmissions. As remote sensing algorithms frequently use the information “in
between” lines to retrieve atmospheric properties, this could certainly be a source of
errors in the retrievals.

If the user asks for “birnbaum” chi function to be used, our code “blends” in the
Cousin and Birnbaum chi functions. Close to the lines (typically within 25 cm−1 for the
strong bands, and within 1-2 cm−1 for the weaker bands), the Birnbaum chi function is
used. Outside of this region, the Cousin function is turned on gradually, till it is fully
on a distance 1 cm−1 away from this edge. This birnbaum chi function can be used
whether or not line mixing is turned on or not.

If the user asks for “cousin” chi function to be used, our code just turns on the Cousin
chi function only. Because the Cousin function includes the effects of line mixing, this
feature can only be used if line mixing is turned off.

2.4 Computing the line-mixing lineshape

We have identified many of the strong P,Q,R bands in the 4 and 15 µm regions, where
line mixing computations are performed. For all these bands, the code used to compute
the line mixing lineshape is almost the same and is therefore common. As mentioned
earlier, the main difference comes in the setting up of the interaction matrices W,
whiere the details of the symmetry peculiar to the band under consideration have to be
explicitly implemeted.

In this section, we outline the steps in the computation of the Σ − Π Q branch
lineshape (eg Q 667). Almost all the steps will be applicable to he other bands.

Given the gas amount U in kiloMoles/cm2, the self pressure and temperature, the
code first finds the path length L.

2.4.1 Loading in line parameters, storing β, τ

It then calls subroutine loader which performs a number of initializations. For instance,
it computes the line mixing strength

β =
βselfpself + βforpfor

ptotal

where ptotal = pself + pfor. Similarly it computes the duration of collision parameter
(usually not needed for Q branches, as the lines are all very close together)

τ =
τselfpself + τforpfor

ptotal

The code then initialises other constants, and loads in the relevant HITRAN parameters
for the band in question, such as line strengths and widths. It then adjusts the line
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widths for the pressures and temperatures in question, as well as initialising the partition
fiunctions and computing the temperature adjusted line strengths. For the given band,
the rotational quantum indices and associated parameters (widths, strengths etc) are
all ordered in terms of increasing J , using routine orderer.

2.4.2 Computing lower state rotational energies Elower

Routine efitter is then called, to compute the rotational energies of any missing levels.
When interaction matrix W is built up, a complete knowledge of lower and upper state
rotational energies is required, so that state to state collision rates can be computed.
However, this may require the code to know the rotational energies of some missing
levels. To circumvent this, a three parameter least squares fit of the lower state energies
elower versus rotational number j is performed :

Elower = B × j(j + 1)−D × (j(j + 1))2 + Evib

For the Q667 branch, the even j’s from 2 to 102 are stored on the HITRAN tape, as are
the associated lower state energies Elower The least squares fit thus gives an estimate
for parameters B,D,Evib. Having obtained these parameters, using the above equation
the code can easilty compute the energies of missing levels if necessary – in this case,
the odd j’s and j = 0. The final step is to save in memory the rotational energies
B × j(j + 1)−D × (j(j + 1))2 for the j = 0, 1, 2, 3, ...

2.4.3 Computing relaxation matrix K using PEG law

Now comes the set of routines which actually use the above information to set up the
interaction matrix W. As mentioned earlier, the physics of the band in question is used
in setting up this matrix. Having computed the rotational energies of the lower states
as described above, a set of routines now fit the foreign broadening widths γfor(j) to the
three parameters afor

1 , afor
2 , afor

3 of the Power Exponential Gap (PEG) equations, and
then similarly the self broadening widths γself (j) to the corresponding three parameters
aself

1 , aself
2 , aself

3 . The procedure is described below.
As mentioned earlier, the PEG law models the energetically upward state-to-state

inelastic collisional rates as a function of the rotational energy difference, ∆Ej′j =
Ej′−Ej. First set up matrix ∆E which governs the energy transitions from lower state
j to upper state j′ :

∆E = Ej′j =


0 Ej2 − Ej1 Ej3 − Ej1 Ej4 − Ej1

Ej1 − Ej2 0 Ej3 − Ej2 Ej4 − Ej2

Ej1 − Ej3 Ej2 − Ej3 0 Ej4 − Ej3

Ej1 − Ej4 Ej2 − Ej4 Ej3 − Ej4 0


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Note that if one takes the lower triangular diagonal elements of the above matrix, one
has the lower to upper state transitions j → j′, while the upper triangular diagonal
elements of the above matrix yield the upper to lower state transitions j′ → j.

Using matrix ∆E, the matrix containing the upward relaxation rates going from
lower state j to upper state j′ is then

Kj′j = a1

( | ∆Ej′j |
B0

)−a2

exp
(−a3 | ∆Ej′j |

kT

)
where B0 is the rotational constant and a1, a2, and a3 are adjustable parameters.

Detailed balance is obeyed when the upward transition rate is equal to the downward
transition rate, giving the downward rates in another matrix :

Kjj′ = Kj′j
2j + 1
2j′ + 1

e
∆E
kT

Having constructed matrix Kj′j , we can now construct the relaxation rate matrix K
to fit for parameters al, l = 1, 2, 3. We can put all this information into one matrix,
where the upper triangular part contains the downward rates while the lower triangular
partion contains the upward transition rates. This can be more conveniently expressed
by using the lower triangular part of Kj′j as is (for the upward transition rates), and
using detailed balance to rewrite the the upper triangular part of Kj′j for the downward
transition rates

Krate
j′j = K lowertriang

j′j + K lowertriang
j′j

2j + 1
2j′ + 1

e
∆E(j′j)

kT

The upper diagonals have the downward relaxation rates, while the upper relaxation
rates are in the lower diagonals. This matrix now has all the elements that can interact
with one another, as well as extra elements which may not be needed (remember efitter
precomputed the rotational energies of any missing j levels, in case they are required in
what follows).

Recall that the relaxation rates Kjj′ are determined by adjusting a1, a2, a3, so that
the sum of the relaxation rates that limit the lifetime of a transition equal the linewidth.
Upto this point, the discussion above has been quite general and applicable to all the
bands. Now however, the particular details of the band become important. For the
Q667 branch, the line widths are given by

Wjj ≡ γj = −1
2

even∑
j′ 6=j

K
Σ(e←e)
j′j

− 1
2

even∑
j′ 6=j

βK
Π(f←f)
j′j +

odd∑
j′ 6=j

(1− β)KΠ(e←f)
j′j


where the β probability factor, introduced by Strow and Edwards [2] differentiates
between the collisional relaxation rates which connect states of similar and opposite
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rotational symmetry. As mentioned earlier, β is a measure of the probability that a
collision transfer intensity from one transition to another. For each of the bands for
which line mixing is done, we have experimentally determined β. For the Q667 band,
the superscript on Kj′j denotes the symmetry of the levels involved. In the Π vibrational
level, the relaxation rates have been divided into two groups. Those which connect
rotational levels of similar symmetry are multiplied by β and those which connect levels
of opposite symmetry are multiplied by (1 − β). The β factor is not needed in the Σ
state simply because the odd rotational levels do not exist there. For the Q667 Σ−Π
band, a cartoon of the allowed transitions, and the lines to which they can mix, is shown
in Fig. 2.

The user is referred to Tobin’s thesis [3] for implementation details of the other
bands.

2.4.4 Computing the interaction matrix W

By using a least squares fitting procedure, parameters a1, a2, a3 can be adjusted so that
the sum of the relaxation rates on the RHS of the previous equation are almost equal to
the actual line width Wjj ≡ γQj . Using these fitted parameter values, the off diagonal
elements of Kj′j are recomputed using the PEG scaling law

Kj′j = a1

( | ∆Ej′j |
B0

)−a2

exp
(−a3 | ∆Ej′j |

kT

)
while the diagonal elements are equated to the linewidths Kjj = γj . This is done sepa-
rately for the self and foreign broadened widths. For the pressures under consideration,
the complete relaxation matrix is then a weighted sum of the two relaxation matrices

K =
Kforpfor + Kselfpself

pfor + pself

The diagonal elements of interaction Hamilitonian are the linewidths of K. If there
is no line mixing, the mechanics of the algorithm will just give a Lorentzian lineshape.

The off diagonal elements of the perturbation or interaction matrix are then simply
proportional to the off diagonal elements of the relaxation matrix; if there is no line
mixing (β = 0), these elements are zero.

Combining the above two Hamiltonians, the interaction matrix W ' H1 is

W = diag(K) + β × offdiag(K)

2.4.5 Computing the transition population amplitudes

In order to compute the full line mixing lineshape, a knowledge of the transition popu-
lation amplitudes is necessary. These amplitudes are computed in trans pop
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Figure 2: Rotational relaxation rates, Kj′j , for several Q-branch lines of a Σ ← Π
transition. In our line-mixing model, Π rates connecting rotational levels of similar
parity are multiplied by β and rates connecting levels of opposite parity are multiplied
by (1− β).
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The transition amplitude is computed using

d =

√
S

ρ

where d is the transition amplitude (which is the square root of the transition probabil-
ity), S is the line strength and ρ is the population.

For the isotope in questions, the partition function coefficients are read in a, b, c, d
(obtained from qtips.f). This enables the computation of the partition functions both at
the reference and actual temperatures, Z(296), Z(T ). For a line of rotational quantum
number j, centered at ν0(j) with lower rotational energy Elower(j) and strength Sj , the
reference temperature transition amplitude d is

α(296) =
8π3

3
ν0(j)(1− e−c2ν0(j)/296)

hc

β(296) = (2j + 1)× e−c2Elower(j)/296 × 1e−36/Z(296)

d =

√
Sj

α(296)× β(296)× 10−7

The population ρ at the desired temperature can similarly be computed using tem-
perature T instead of Tref = 296 in the expressions for α, β above to get

ρ = α(T )× β(T )× 10−7

The powers of 10 in the above expressions are 10−36 for a debye2 unit in terms of
ergscm3, and a factor of 10−7 to change Planck’s constant from J.s to erg.s

2.4.6 Computing the full mixing lineshape

The complete Hamiltonian is written as

H = H0 + H1 = diag(v0) + ıW

from which the eigenvalues lj and eigenvectors Aj of H are found. Having done this,
and having already computed the transition amplitudes dj (dipole moment matrix em-
lements) and density ρj (matrix elemtns that represent population difference between
lower and upper levels), it is now straightforward to loop over the individual lines and
compute the total lineshape. Note that if necessary, a birnbaum χ function would have
been mutiplied into each contribution :

koptdepth
mix(j) (ν) =

N

π
IM

(
(d ·A)j(A−1 · ρ · d)j

ν − lj

)
× χbirnbaum(γj , T, p, ps)
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koptdepth
mix (ν) =

∑
j

koptdepth
mix(j) (ν)

where N = ps
pref

Tref

T
Lµ
π , L being the path length and µ the molecular density.

Recall that if there is no linemixing, the lineshape should just be a sum of Lorentzians.
Thus if H1 has no off diagonal elements ie its elements consists entirely of the linewisths
on the diagonal, then the eigenvalues of H would be the line centers v0(j), and the
spectrum would end up being a sum of Lorentzians, with line center v0(j) and line
width γj . If there is linemixing, then the linecenters would still be close to v0(j), but
the lineshape would deviate from a sum of lorentzians.

2.4.7 Computing the first order mixing lineshape

The first-order approximation for kmix(ν) is

k1st(ν) =
N

π

∑
j

Sj

(
γj + (ν − νj)Yj

(ν − νj)2 + (γj)2

)
with Yj = 2

∑
k 6=j

dk

dj

Wkj

νj − νk

where, as above, N = ps
pref

Tref

T
Lµ
π , Sj is the line strength, and the mixing coefficients Yj

are obtained from the interaction matrix W and transition amplitudes dj .

2.5 Implementing the line mixing/duration of collision algorithm

Assume the code is about to compute the contribution of band B to the absorption
spectrum. For any input wavenumber interval, this could be done by following the
prescription above. However, the code could be sensitive to the numerics of the matrix
diagonalization and inversion, especially far from the band. As mentioned above, far
from the band center, the ratio of line mixing and Lorentz absorption coefficients is a
constant Ω, that depends on the band, temperature and partial and total pressures. In
this far away region, it is numerically more appropriate to use this ratio, than to expect
the code to behave correctly.

In addition, when fitting experimental data to the line mixing/ Birnbaum chi func-
tions, the emphasis was on the region close to the 4.3 µm bandhead, and in between
the lines. On the other hand, experimentally, far from band center, we see that the
Cousin lineshape describes the observed experimental spectra quite well. Combining
the above two, to compute the lineshape far from line centre, it is apropriate to just use
the Cousin chi function to multiply a Lorentz or Voigt lineshape.

For these reasons, when computing the contribution of the current band B to the
absoption coefficient, the code divides the input wavenumber region into 5 intervals.
Assume the wavenumbers of the band edges are b1, b2. In the region f1, f2 where f1 =
b1 −∆νfull, f2 = b2 + ∆νfull, full mixing is done. ∆νfull varies according to the band,
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and tells the code where full mixing should be computed. For the 4.3 µm band, we have
the following values :

Band ∆νfull (cm−1) Description
2350 40 Strong Σ− Σ band
2310 0.025 Strong Π−Π band
2320 0.025 Strong ∆−∆ band
2352 0.025 Weak Σ− Σ band
2353 0.025 Weak Σ− Σ band
2354 0.025 Weak Σ− Σ band

others 15 Rest of the 4 µm bands

while for the 15 µm band, we have the following values :

Band ∆νfull (cm−1) Description
667 5 Strong Σ−Π band

others 15 Rest of the 15 µm bands

One wavenumber away from f1, f2, the linemixing/Birnbaum lineshape is turned off,
and Cousin is turned on (ie f1 − f3 = f4 − f2 = 1cm−1, where in the region to the left
of f3 and to the right of f4, the lineshape is klor × χCousin

The wavenumber regions are illustrated below

-------|------------|--------|==========|--------|-------------|----------
| | b1 b2 | |
f3 f1 f2 f4
| | | |

cousin | full/cousin| full | full/cousin | cousin
| | | |

I | IV | III | V | II

• : Regions I,II : these regions are far away from the band edges. If the Birnbaum
function was being used as the chi function, it is turned off and the Cousin chi
function is turned on.

• : Regions III : this region is at the band center itself. Full or first order line mixing
as described above, is computed. In addition, the Birnbaum chi function is used,
if the user has specified it is to be used.
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• : Regions IV,V : these are intermediate distance regions. To smoothly blend on
the complete line mixing/birnbaum computation onto the Cousin chi function, a
linear mix of the above two is done

Note that the code can perform full linemixing in regions III,IV,V above, or just use
first order linemixing. The k = klor×∆νfull algorithm is implememted in regions IV,V,
if first order linemixing is specified.

In addition, the full mixing lineshape theory is developed using Lorentz lines. The
lineshape in the lower atmosphere (p > 0.158atm) is Lorentz. However, the lineshape
in the upper atmosphere (p < 0.021atm) is turning towards a Doppler profile. Thus it
is incorrect to use the full line mixing lineshape at lower pressures. A linear blending
of the lineshape, from full to first order, is performed by the code, illustrated by the
cartoon below.

-------------------------- TOA

first order

-------------------------- 2.065 e-2 atm

blend

-------------------------- 1.584 e-1 atm

full mix

-------------------------- Ground

Thus a combination of the above two blends are done - in terms of wavenumbers away
from the band center, and total pressure. Note for the 15 µm band, PR linemixing is
done only for the 720 Σ−Π and 741 ∆−Π bands. For the other bands, no PR linemixing
is done.
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3 run6

The Matlab code has four main driver files : run6.m, run6co2.m and run6water.m and
run6watercontiunuum.m.

run6.m is a general code that will work for all gases; however one should run the
specialized codes for water and CO2, so as to to utilise the above physics in the computed
lineshapes. We describe the run6.m program parameters and algorithm in detail below;
in the next two sections, we will discuss the corresponding similarities and differences
for the water and carbon dioxide codes.

3.1 input units for run6

The input argument list to all codes also includes the name of a profile file which specifies
the layer number, total pressure, gas partial pressures (both in atm), gas temperature
(in Kelvin) and gas amount (in kilomolescm−2). The profile should be in a 5 column
format, and should be a text file.

3.2 Mex files and HITRAN database

(this is for run6)
If the user wants to change the name of the line database file that is used, he/she will
have to go into the run6* files and change the name of the file in the line beginning with
the word fnamePRE, which is currently set to :

fnamePRE=’/salsify/scratch4/h98.by.gas/g’;

(this is for run7)
The default is to use HITRAN2000; if the user wants to change this, all that has to be
done is supply an additional input parameters, topt.HITTRAN = xxxx (see below for
details!!!)

To speed the code up, a number of loops have been written as fortran MEX files.
All these files are in subdirectory FORTRANFILES, and assume input arrays/matrices
that are smaller than certain limits. If the user wants to change these limits, he/she
will have to edit the file max.inc and recompile the Mex files.

c this is max length of arrays that can be used in the Mex Files
c this number came out of
c 200000 = max number of elements in mesh
c eg (755-655)/0.0005 = 160000
c 4 = number tacked on to arrays so boxint(y,5) can be done

integer MaxLen
parameter(MaxLen=200010)
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c assume max number of any of P,Q,R lines = 300
integer MaxPQR
parameter(MaxPQR=300)

c assume max number of any of layers = 100
integer kMaxLayer
parameter(kMaxLayer=100)

To compile the Mex files, the user has to type makemex1 at the UNIX prompt (if
only run6/7.m is being used), or type makemex (if run6/7co2.m will be used). This
compiles all the Mex files, and creates symbolic links to these files from the necessary
subdirectories.

If the user is going to use run6/7co2.m, he/she will also need to go to the C02 COMMON
subdirectory, and type link.sc so that symbolic links from the CO2 subdirectories to
the common files are created.

3.3 Water, nitrogen, oxygen continuum

Through parameter CKD (see below), the user can toggle the continuum calculation
on/off for three gases : water, oxygen and nitrogen (gasIDs 1,7,22 respectively).

• Water : CKD can be set to -1 (no continuum), or 0,21,23,24 for CKD versions 0,
2.1, 2.3, 2.4. Note when the first 3 versions of CKD are included, the computation
proceeds by using the code which does not require a “local” lineshape. However,
CKD 2.4 does require a “local” lineshape.

• Oxygen : CKD can be set to -1 (no continuum), or +1 (continuum)

• Nitrogen : CKD can be set to -1 (no continuum), or +1 (continuum)

• For all other gases, the value of CKD is irrelevant

3.4 run6.m input parameters

A typical call to run6 would involve sending in the following :
[outwave, outarray] = run6(gasID, fmin, fmax, ffin, fmed, fcor, fstep

xnear, xmed, xfar, nbox, strfar, strnear, LV G,CKD, profile)
where the right hand side variables would be

TYPE VAR DESCRIPTION TYPICAL VALUE
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integer gasID HITRAN gas ID 3
integer fmin minimum freq (cm-1) 605
integer fmax maximum freq (cm-1) 630
real ffin fine point spacing (cm-1) 0.0005
real fmed medium point spacing (cm-1) 0.1
real fcor coarse point spacing (cm-1) 0.5
real fstep wide mesh width size (cm-1) 1.0
real xnear near wing distance(cm-1) 1.0
real xmed med wing distance(cm-1) 2.0
real xfar far wing distance(cm-1) 25.0
integer nbox boxcar sum size (odd integer) 1,5
real strfar min line strength for far wing lines
real strnear min line strength for near wing lines
char LVG (L)orentz,Voi(G)t,(V)anHuber ’V’
integer CKD continuum no = -1 (most gases) -1

yes for water (0,21,23,24)
yes for N2, O2 (gases 7,22)

matrix profname Nx5 matrix (gasID,pressure,pp,temp,amt)
pressure, partial pressure in atm, T in K
gas amount in kilomolecules/cm2

The output arguments from the function call are the output wavevector, outwave,
and the computed line spectra in outarray. The vector outwave (and thus the output
array outarray) spans the wavenumber range from fmin to fmax− (ffin× nbox), at
a resolution of ffin× nbox.

3.5 run7.m input parameters

The same parameters as above are used. However, many of them are now defaulted to
preset values, and can be reset by using optional input argument topts, where topts is
a structure.

A typical call to run7 would involve sending in the following :
[outwave, outarray] = run7(gasID, fmin, fmax, profile, {topts});
where the required right hand side variables would be

TYPE REQUIRED DESCRIPTION TYPICAL VALUE
integer gasID HITRAN gas ID 3
integer fmin minimum freq (cm-1) 605
integer fmax maximum freq (cm-1) 630
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matrix profname Nx5 matrix (gasID,pressure,pp,temp,amt)
pressure, partial pressure in atm, T in K
gas amount in kilomolecules/cm2

and the optional right hand side arguments would be sent in structure topts; the
default values are as shown :

TYPE OPTIONAL DESCRIPTION DEFAULT VALUE
real ffin fine point spacing (cm-1) 0.0005
real fmed medium point spacing (cm-1) 0.1
real fcor coarse point spacing (cm-1) 0.5
real fstep wide mesh width size (cm-1) 1.0
real xnear near wing distance(cm-1) 1.0
real xmed med wing distance(cm-1) 2.0
real xfar far wing distance(cm-1) 25.0
integer nbox boxcar sum size (odd integer) 5
real strfar min line strength for far wing lines 0.0
real strnear min line strength for near wing lines 0.0
char LVG lineshape : (L)orentz,Voi(G)t,(V)anHuber ’V’
string HITRAN path to HITRAN database /asl/data/hitran/h2k.by.gas
integer CKD continuum no = -1 (most gases) -1

yes for water (0,21,23,24)
yes for N2, O2 (gases 7,22)

The output arguments from the function call are the output wavevector, outwave,
and the computed line spectra in outarray. The vector outwave (and thus the output
array outarray) spans the wavenumber range from fmin to fmax− (ffin× nbox), at
a resolution of ffin× nbox.

3.6 Detailed description of the input parameters

Two of the input parameters are self-describing. The first parameter, gasID is an
integer value specifying which gas you want to compute the line spectra for. This
integer value is the same as that used for the HITRAN database; for example gasID=3
corresponds to ozone. LV G is a character parameter that tells the code which lineshape
to use for all the lines. Of the lineshapes described previously, our code can compute
one of the following three - Lorentz, VoiGt or VanVleck-Huber. The VanVleck-Huber
is computed with a Voigt lineshape, and is the one we recommend; to use this lineshape,
LV G is set to ’V’.
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When the code starts running, it loads in all lines whose centers lie between fmin−
xfar and fmax+xfar, and whose database line strength is greater than min(strfar,strnear),
as the user assumes these are the lines which will have a discernible effect on the overall
spectra. Using these lines, and their associated parameters, the computations are per-
formed on a fine mesh resolution ffin and then boxcar averaged to an output resolution
ffin×nbox. The results of the computations are output for a wavector that spans fmin
to fmax − ffin × nbox. Internally, the computations are essentially performed on a
fine mesh that spans fmin− (nbox− 1)/2 to fmax− ffin× nbox + (nbox− 1)/2. In
this way, the boxcar averaging can be done on the endpoints.

If this direct method were used, depending in the gasID and wavenumber region
chosen, the code could be agonizingly slow. In the interests of speed (and mantaining
the accuracy), the code therefore requires some more parameters to be sent in.

With these additional parameters, the output wavevector fmin to fmax− ffin×
nbox is divided into equal sized “wide meshes” of size fstep cm−1. Thus there are N
wide meshes, where

N =
fmax− fmin

fstep
(1)

Suppose we are considering the ith widemesh, and we denote the start frequency of
this widemesh by f1, and the stop frequency by f2. These two numbers are related to
each other and to the other numbers by

f1 = fmin + (i− 1)× fstep− ffin× (nbox− 1)/2

f2 = fmin + ii× fstep− (ffin× nbox) + ffin× (nbox− 1)/2 (2)

This “finemesh” thus spans (f1, f2) at the fine resolution of ffin cm−1

Associated with this finemesh is a medium resolution mesh, that spans (f3, f4) at
a coarser resolution fmed where

f3 = fmin + (i− 1)× fstep

f4 = fmin + ii× fstep (3)

In addition there is a coarse resolution mesh, that spans (f3, f4) at a coarsest
resolution fcor where f3, f5 are the same, as are f4, f6 :

f5 = fmin + (i− 1)× fstep

f6 = fmin + ii× fstep (4)

The spectral region of the output wavevector that corresponds to these three meshes
is essentially f3, f4, adjusted for the last point. In other words, the ith output region
fout(i) spans f3 to f4− nbox× ffin, at a resolution of nbox× ffin
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For any of the N widemeshes, lines are grouped into three categories, depending
where they fall within the three categories defined below :
(a) near lines are those whose line centers lie in the wavenumber interval (f3−xnear, f4+
xnear) = (w1, w2). All computations using these lines are performed on the fine mesh
(spanning f1, f2) of point spacing ffin, and then boxcar averaged to the output wavevec-
tor fout(i)
(b) medium lines are those whose line centers lie in the wavenumber interval (f3 −
xnear − xmed, f3− xnear) ∪ (f4 + xnear, f4 + xnear + xmed) = (w3, w1) ∪ (w2, w4).
All computations using these lines are performed on the medium mesh (spanning f3, f4)
of point spacing fmed, and then splined to the output wavevector fout(i)
(c) far lines are those whose line centers lie in the wavenumber interval (f3−xmed, f3−
xfar) ∪ (f4 + xmed, f4 + xfar) = (w5, w3) ∪ (w4, w6). All computations using these
lines are performed on the coarse mesh (spanning f3, f4) of point spacing fcor, and then
splined to the output wavevector fout(i)
The cartoon in Figure ?? summarizes the above relationships.

With the above description, the following restrictions on the parameters are now
self explanatory :
(1) xnear ≤ xmed ≤ xfar
(2) xnear ≥ fstep
(3) xmed/fmed xnear/fmin fstep/fmed fstep/ffin are integers
(4)fstep/(nbox*ffin) fcor/ffin are integers
(5)(fmax-fmin)/fstep (fmax-fmin)/fcor are integers

A useful rule of thumb is that ffin,fmed,fcor are chosen so that they are all equal
to (1/2)/10n n ≤ 5, with n chosen as necesary for the three parameters. For example,
n = 3, 1, 0 gives ffin = 0.0005, fmed = 0.05, fcor = 0.5cm−1.

The above algorithm used is almost the same as that used by GENLN2, except that
GENLN2 does not currently have the medium resoltion mesh ie the overall lineshape
is a sum of boxcar averaged fine mesh contribution and a spline computed coarse mesh
contribution.

Other differences found between this LBL code and GENLN2 is that all compu-
tations here are in real*8, while GENLN2 mixes bewteen real*8 and real*4. The dis-
crepancies between these two representations is noticeable in computations of eg the
partition fucntions. In addition, we believe that the contribution of a line whose center
is in the “far line” regime, is incorrectly splined at the last interval |xcenter − x| ∼ xfar

3.7 Detailed description of the output parameters

Two parameters are passed out after running the code : a 1d array outwave that
contains the output wavevector, and a 2d matrix outarray that contains the computed
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Figure 3:
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lineshapes at the user set atmospheric levels.

3.8 Outline of the algorithm

The code starts out by checking to ensure that the input parameters make sense and
that they are self consistent. For example, parameter LVG must be set to one of the
allowable line shapes. In addition, the parameters should all be self consistent in that
they have to staisfy the restrictions given at the end of the previous subsection.

Having ascertained the self consistency of the parameters sent in by the user, the
program loads in the required mass isotopes for the chosen gas. For example ozone has
5 isotopes.

The program then loads in the user specified profile for the gas. Having done this,
the program then uses fmin, fmax, ffin, nbox to define the output wave vector. After
this, the gas initializes the qtipts coefficients that are used to compute the partition
functions. This is essentially a GENLN2 subroutine, similar to the program “tips” by
R.R.Gamache.

The program is now ready to load in the gas line parameters from the HITRAN
database. As described above, it loads in all lines whose centers lie between fmin−xfar
and fmax+xfar, and whose database line strength is greater than min(strfar,strnear).

At this point, the program is almost ready to start running in earnest. Before doing
that, it computes the number of wide meshes N and the number of points in each wide
mesh that will be mapped to the output wavevector. If the user loaded in a profile that
has more than one layer in it, the program calls subroutine doUnion2, that computes
the optical depth of each linecenter for the chosen profile conditions; if a line is strong
enough to be used in any one of the levels, it will be used at all levels. This will ensure
that the optical depth profiles are smooth. An example of this is the case of ozone,
where lines could “turn-on” high in the atmosphere, but have almost no optical depth
lower in the atmosphere. The importance of this is when the output from the code
is used to generate the kCARTA database using Singular Value Decomposition; the
SVD algorithm would work more efficiently with smoothly varying data (achieve better
compression).

Figure 4 outlines the above initialisation stages of the algorithm.
The program is now ready to loop over the far,medium and near lines. For each of the

wide meshes, the program first defines the fine, medium and coarse meshes (frequencies
and indices), as described in the previous section. It then sorts all the lines it has loaded
into three bins; near, medium and far, also as described in the previous section.

It then enters a loop over layers. For the current layer, the program uses the gas
profile to determine the gas amount, temperature, total and self pressures. For each
layer, it first computes the contribution due to the near lines, then the medium lines
and finally the far lines. The near line spectrum is computed on the fine mesh, and the
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Figure 4:

results are boxcar averaged and added onto the output array. The medium line spectrum
is computed on the medium mesh, spline interpolated onto the output wavevector and
added on to the output array.The far line spectrum is computed on the coarse mesh,
spline interpolated onto the output wavevector and added on to the output array.

For each of the fine,medium and coarse computations, the code computes the fol-
lowing line parameters, for each of the lines
(a) the partition function, using qfcn = q(A,B, C, D, G, lines, tempr)
(b) the line center frequency, taking the pressure of the current layer into account
freq = lines.ZWNUM + press(jj) ∗ lines.ZTSP
(c) the overall broadening of the line, using the self and foreign broadening contributions
brd = broad(p, ps, 1.0, forbrd, selfbrd, pwr, tempr, gasID)
(d) the line center line strength, using the necessary layer parameters such as tempera-
ture, gas amount and necessary line parameters
strength = findstren(qfcn, freq, tempr, energy, s0, GasAmt(jj))
The above computations are essentially GENLN2 routines.

Figure 5 outlines the loop stage of the algorithm.

4 run6water

run6water.m is a specialised code for H2O, so as to to utilise the above physics, namely
local lineshape and the CKD continuum effects in the computed lineshapes. If the user
simply wants to do a Lorentz or Voigt computation, then it would behoove him/her to
use run6.m instead of this special code.
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Figure 5:

4.1 run6water.m input parameters

A typical call to run6water would involve sending in the following :
[outwave, outarray] = run6water(gasID, fmin, fmax, ffin, fmed, fcor,

fstep, xnear, xmed, xfar, nbox, strfar, strnear, LV F,
CKD, selfmult, formult, usetoth, local, profname);

where the right hand side variables are the same as those for run6 described above;
there are 5 new variables on the right side.

TYPE VAR DESCRIPTION TYPICAL VALUE
integer gasID HITRAN gas ID 1
integer fmin minimum freq (cm-1) 705
integer fmax maximum freq (cm-1) 730
real ffin fine point spacing (cm-1) 0.0005
real fmed medium point spacing (cm-1) 0.1
real fcor coarse point spacing (cm-1) 0.5
real fstep wide mesh width size (cm-1) 1.0
real xnear near wing distance(cm-1) 1.0
real xmed med wing distance(cm-1) 2.0
real xfar far wing distance(cm-1) 150.0
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integer nbox boxcar sum size (odd integer) 1,5
real strfar min line strength for far wing lines
real strnear min line strength for near wing lines
char LVG (L)orentz,Voi(G)t,(V)anHuber ’V’
integer CKD continumm no (-1) -1

yes water : (0,21,23,24)
real selfmult multiplier for self part of contiuum 0¡x¡1

formult multiplier for for part of contiuum 0¡x¡1
integer usetoth use Toth or HITRAN +1 to use Toth

-1 to use HITRAN
integer local use local lineshape +1 to use local*chi defn

0 to use local defn
-1 to use run6 defn

The output arguments from the function call are once again the output wavevector,
outwave, and the computed line spectra in outarray. The vector outwave (and thus the
output array outarray) spans the wavenumber range from fmin to fmax−(ffin×nbox),
at a resolution of ffin× nbox.

4.2 run7water.m input parameters

The same parameters as above are used. However, many of them are now defaulted to
preset values, and can be reset by using optional input argument topts, where topts is
a structure.

A typical call to run7 would involve sending in the following :
[outwave, outarray] = run7water(gasID, fmin, fmax, profile, {topts});
where the required right hand side variables would be

TYPE REQUIRED DESCRIPTION TYPICAL VALUE
integer gasID HITRAN gas ID 1
integer fmin minimum freq (cm-1) 605
integer fmax maximum freq (cm-1) 630
matrix profname Nx5 matrix (gasID,pressure,pp,temp,amt)

pressure, partial pressure in atm, T in K
gas amount in kilomolecules/cm2

and the optional right hand side arguments would be sent in structure topts; the
default values are as shown (notice that CKD is defaulted to -1 (OFF) and the lineshape
is augmented to “local”) :
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TYPE OPTIONAL DESCRIPTION DEFAULT VALUE
real ffin fine point spacing (cm-1) 0.0005
real fmed medium point spacing (cm-1) 0.1
real fcor coarse point spacing (cm-1) 0.5
real fstep wide mesh width size (cm-1) 1.0
real xnear near wing distance(cm-1) 1.0
real xmed med wing distance(cm-1) 2.0
real xfar far wing distance(cm-1) 25.0
integer nbox boxcar sum size (odd integer) 5
real strfar min line strength for far wing lines 0.0
real strnear min line strength for near wing lines 0.0
char LVG lineshape : (L)orentz,Voi(G)t,(V)anHuber ’V’
string HITRAN path to HITRAN database /asl/data/hitran/h2k.by.gas
integer CKD continuum no = -1 (most gases) -1

yes for water (0,21,23,24)
yes for N2, O2 (gases 7,22)

real selfmult multiplier for self contiuum 0¡ x¡ 1 1
real formult multiplier for foreign continuum 0¡ x¡ 1 1
integer local modification to LVG lineshape 0

+1 to use local*chi lineshape defn
0 to use local lineshape defn
-1 to use standard LVG lineshape defn

4.3 Detailed description of the input parameters

As mentioned above, most of the input parameters are the same as for run6 and a
description is not repeated here. However, five of the last six parameters are new, and
so will be explained below.

CKD is a integer parameter that tells the code which continuum to use. Note that
based on whether or not the “local” lineshape was used, the appropriate CKD lookup
tables are used. For CKD 0,21,23 the code can compute the continuum whether or not
the local lineshape was used; for CKD24, only the local lineshape can be used.

selfmult is a real parameter between 0 and 1, that is used to scale the “self”
contribution to the continuum.

formult is a real parameter between 0 and 1, that is used to scale the “foreign”
contribution to the continuum.

usetoth is a integer parameter that tells the code whether or not to use the Toth
database.

UMBC 39



DRAFT UMBC LBL Version 7

local is a integer parameter that tells the code whether or not to compute the local
lineshape (must be set to “0” or “1” to use CKD2.4)

5 run6watercontinuum

run6watercontinuum.m is a specialised code for H2O, that only computes the CKD
continuum. This code is to be used in conjunction with run6water.m

5.1 run6watercontinuum.m input parameters

A typical call to run6watercontinuum would involve sending in the following (note that
the ’LVG” parameter has been replaced by “divide”) :

[outwave, outarray] = run6water(gasID, fmin, fmax, ffin, fmed, fcor,
fstep, xnear, xmed, xfar, nbox, strfar, strnear, divide,
CKD, selfmult, formult, usetoth, local, profname);

where the right hand side variables are the same as those for run6 described above;
there are 5 new variables on the right side.

TYPE VAR DESCRIPTION TYPICAL VALUE
integer gasID HITRAN gas ID 1
integer fmin minimum freq (cm-1) 705
integer fmax maximum freq (cm-1) 730
real ffin fine point spacing (cm-1) 0.0005
real fmed medium point spacing (cm-1) 0.1
real fcor coarse point spacing (cm-1) 0.5
real fstep wide mesh width size (cm-1) 1.0
real xnear near wing distance(cm-1) 1.0
real xmed med wing distance(cm-1) 2.0
real xfar far wing distance(cm-1) 150.0
integer nbox boxcar sum size (odd integer) 1,5
real strfar min line strength for far wing lines
real strnear min line strength for near wing lines
integer divide what is overall computation -1
integer CKD continumm no (-1) 24

yes water : (0,21,23,24)
real selfmult mult for self part of contiuum 0¡ x¡ 1

formult mult for for part of contiuum 0¡ x¡ 1
integer usetoth use Toth or HITRAN +1 to use Toth

-1 to use HITRAN
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integer local use local lineshape +1 to use local*chi defn
0 to use local defn
-1 to use run6 defn

The output arguments from the function call are once again the output wavevector,
outwave, and the computed line spectra in outarray. The vector outwave (and thus the
output array outarray) spans the wavenumber range from fmin to fmax−(ffin×nbox),
at a resolution of ffin× nbox.

5.2 run7watercontinuum.m input parameters

The same parameters as above are used. However, many of them are now defaulted to
preset values, and can be reset by using optional input argument topts, where topts is
a structure.

A typical call to run7 would involve sending in the following :
[outwave, outarray] = run7watercontinuum(gasID, fmin, fmax, profile, {topts});
where the required right hand side variables would be

TYPE REQUIRED DESCRIPTION TYPICAL VALUE
integer gasID HITRAN gas ID 1
integer fmin minimum freq (cm-1) 605
integer fmax maximum freq (cm-1) 630
matrix profname Nx5 matrix (gasID,pressure,pp,temp,amt)

pressure, partial pressure in atm, T in K
gas amount in kilomolecules/cm2

and the optional right hand side arguments would be sent in structure topts; the
default values are as shown (as is readily appreciated, most of the run7 input arguments
are unnecessary and have been REMOVED; also sice the continuum is smooth, we do
not really need 5 point averaging and so nbox is defaulted to +1 instead of +5) :

TYPE OPTIONAL DESCRIPTION DEFAULT VALUE
real ffin fine point spacing (cm-1) 0.0025
integer nbox boxcar sum size (odd integer) 1
integer CKD continuum no = -1 (most gases) -1

yes for water (0,21,23,24)
integer divide what is overall computation -1
real selfmult mult for self contiuum 0 ¡ x ¡ 1 1
real formult mult for foreign continuum 0 ¡ x ¡ 1 1
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integer local modification to LVG lineshape 0
+1 to use local*chi lineshape defn
0 to use local lineshape defn
-1 to use standard LVG lineshape defn

5.3 Detailed description of the input parameters

ffin× nbox determines the output spacing
CKD is a integer parameter that tells the code which continuum to use. Note that

based on whether or not the “local” lineshape was used, the appropriate CKD lookup
tables are used. For CKD 0,21,23 the code can compute the continuum whether or not
the local lineshape was used; for CKD24, only the local lineshape can be used.

selfmult is a real parameter between 0 and 1, that is used to scale the “self”
contribution to the continuum.

formult is a real parameter between 0 and 1, that is used to scale the “foreign”
contribution to the continuum.

local is a integer parameter that tells the code whether or not to compute the local
lineshape (must be set to “0” or “1” to use CKD2.4)

divide is an IMPORTANT parameter that enables the user to ouput the correct total
continuum, or along with selfmult, formult, just parts of it (such as self or foreign or
combination). The effects are described as below

DIVIDE SELFMULT FORMULT DIVIDES BY RESULT
-1 xx xx 1.0 q v tanh(c2 v/2T) (296/T) ×

(ps CS + pf CF)
+1 1.0 0.0 q v tanh(c2 v/2T) (296/T) * ps CS
+1 0.0 1.0 q v tanh(c2 v/2T) (296/T) * (p-ps) CF
+1 xx xx q v tanh(c2 v/2T) (296/T) (ps CS + pf CF)

6 run6co2

run6co2.m is a specialised code for CO2, so as to to utilise the above physics, namely
line mixing and duration of collision effects in the computed lineshapes. If the user
simply wants to do a Lorentz or Voigt computation, then it would behoove him/her to
use run6.m instead of this special code.
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6.1 run6co2.m input parameters

A typical call to run6co2 would involve sending in the following :
[outwave, outarray] = run6co2(gasID, fmin, fmax, ffin, fmed, fcor,

fstep, xnear, xmed, xfar, nbox, strfar, strnear, LV F, IO, birn, profile)
where the right hand side variables are the same as those for run6 described above;

there are three new variables on the right side.

TYPE VAR DESCRIPTION TYPICAL VALUE
integer gasID HITRAN gas ID 2
integer fmin minimum freq (cm-1) 705
integer fmax maximum freq (cm-1) 730
real ffin fine point spacing (cm-1) 0.0005
real fmed medium point spacing (cm-1) 0.1
real fcor coarse point spacing (cm-1) 0.5
real fstep wide mesh width size (cm-1) 1.0
real xnear near wing distance(cm-1) 1.0
real xmed med wing distance(cm-1) 2.0
real xfar far wing distance(cm-1) 150.0
integer nbox boxcar sum size (odd integer) 1,5
real strfar min line strength for far wing lines
real strnear min line strength for near wing lines
char LVF (L)orentz,(V)anHuber,(F)ullMixing ’F’
char IO ’0’ for no mixing, ’1’ for mixing ’1’
char birn (n)o chi , (c)ousin, (b)irnbaum ’b’

The output arguments from the function call are once again the output wavevector,
outwave, and the computed line spectra in outarray. The vector outwave (and thus the
output array outarray) spans the wavenumber range from fmin to fmax−(ffin×nbox),
at a resolution of ffin× nbox.

6.2 run7co2.m input parameters

The same parameters as above are used. However, many of them are now defaulted to
preset values, and can be reset by using optional input argument topts, where topts is
a structure.

A typical call to run7co2 would involve sending in the following :
[outwave, outarray] = run7co2(gasID, fmin, fmax, profile, {topts});
where the required right hand side variables would be
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TYPE REQUIRED DESCRIPTION TYPICAL VALUE
integer gasID HITRAN gas ID 2
integer fmin minimum freq (cm-1) 605
integer fmax maximum freq (cm-1) 630
matrix profname Nx5 matrix (gasID,pressure,pp,temp,amt)

pressure, partial pressure in atm, T in K
gas amount in kilomolecules/cm2

and the optional right hand side arguments would be sent in structure topts; the
default values are as shown (notice that xfar is defaulted to 250 cm−1, lineshape is
augmented to “full linemixing” with ‘birnbaum” turned on; also, do linemixing on all
major bands and PQR branches) :

TYPE OPTIONAL DESCRIPTION DEFAULT VALUE
real ffin fine point spacing (cm-1) 0.0005
real fmed medium point spacing (cm-1) 0.1
real fcor coarse point spacing (cm-1) 0.5
real fstep wide mesh width size (cm-1) 1.0
real xnear near wing distance(cm-1) 1.0
real xmed med wing distance(cm-1) 2.0
real xfar far wing distance(cm-1) 250.0
integer nbox boxcar sum size (odd integer) 5
real strfar min line strength for far wing lines 0.0
real strnear min line strength for near wing lines 0.0
char LVG lineshape : (L)orentz,(V)oigt/anHuber,(F)ull ’F’

or (G)enlng2-92 which has only Q branch line mixing
and cousin line shape for all other bands/branches

char IO upper atmosphere line mixing computations ’0’
’1’ for first order line mix, ’0’ for none

char birn duration of collisions effects ’b’
’b’,’B’ for Birnbaum
’c’,’C’ for Cousin
’n’,’N’ for none

string HITRAN path to HITRAN database /asl/data/hitran/h2k.by.gas
array band which bands to use in line mixing (all = -1) -1

choose from the below combinations
CO2q sigpi [618 648 662 667 720 791 1932 2080 2129];
CO2q delpi [668 740 2093];
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CO2pr sigsig [2350 2351 2352 2353 2354];
CO2pr deltdelt [2310 2311];
CO2pr pipi [2320 2321 2322];
CO2pr sigpi [618 648 662 667 720 791];
CO2pr delpi [668 740]; (note k/klor for PR delpi=0.5)

array PQRallowed which branches to use in line mixing (all = -1) -1
choose from the below combinations
01 = Q delt pi
02 = Q sig pi
-14 = P sig pi
-15 = P delt pi
+14 = R sig pi
+15 = R delt pi
-11 = P sig sig
-12 = P delt delt
-13 = P pi pi
+11 = R sig sig
+12 = R delt delt
+13 = R pi pi

6.3 Detailed description of the input parameters

As mentioned above, most of the input parameters are the same as for run6 and a
description is not repeated here. Howvere, the last three parameters are either new or
slightly different than before, and so will be expounded upon below.

LV F is a character parameter that tells the code which lineshape to use for the lines.
Of the lineshapes described previously, this code can compute one of the following three
- Lorentz, VanVleck-Huber or Full mixing. The VanVleck-Huber is computed with a
Voigt lineshape, while the full mixing is essentially a Lorentz computation and so should
only be used at higher pressures.

IO is a character parameter that works if LV F is not ’F’ or ’f’. It tells the code
whether or not to do no line mixing (IO=’0’) or to do first order line mixing (IO=’1’).

birn is a character parameter that determines the chi function to be used. There are
three choices : (n)o, (c)ousin and (b)irnbaum. If birn=’C’,’c’ then the cousin lineshape
cannot be used with mixing turned on; hence the user cannot have LV F=’F’,’f’ or
IO=’1’, with cousin chi functions on.
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Figure 6:

6.4 Outline of the algorithm

The initialisation part of the code is the same as that of run6. This code is designed to
compute the line mixing in various P,Q,R bands using the latest knowledge. As such,
after the code loads in the line parameters from the HITRAN database, it then goes
through a list of bands/branches that it has specific code for, and removes all the lines
that fall within this list, saving the parameters in assorted *.mat files. All the lines that
remain are considered background lines.

Figure 6 outlines the above initialisation stages of the algorithm for run6co2.
The computation of the spectrum then proceeds in two stages. The first stage

involves using only the background lines, and the spectrum associated with these lines
is computed in the exact same fashion as described above for run6. The slight difference
is that only one of two lineshapes is used : if the user specified LV F = ’L’,’l’, then a
Lorentz/vanhuber line shape is used, else a voigt/vanhuber line shape is used.

The second stage is entirely peculiar to run6co2. For the bands that lie within the
HITRAN lines read in, the program proceeds as follows. First the code creates a “high
resolution” wavevector that spans fhigh = (fmin, fmax), at the fine (highest) resolu-
tion. The code is then ready to loop. The outermost loop is over the bands/branches,
while the inner loop is over atmosphere layers. For each layer, the program stores cur-
rent layer profile data : total and self pressure, gas amount and temperature. Depending
on the total pressure of the layer, it then follows one of the following four choices :
(a) if LV F = ’F’,’f’ and total pressure is above 0.158 atm, do full line mixing computa-
tion, as described below. This is because pressures are high enough that a Lorentz line
shape is deemed good enough OR
(b) if LV F = ’F’,’f’ and total pressure is below 0.021 atm, do first order mixing com-
putation, as described below. This is because pressures are low enough that a Doppler

UMBC 46



DRAFT UMBC LBL Version 7

line shape is required OR
(c) if LV F = ’F’,’f’ and total pressure is between 0.021 and 0.158 atm, do a weighted
average of first order and full mixing computation, as described below. This is because
pressures are high enough that first order approximations are not good enough, while
pressures are low enough that a Doppler line shape is required OR
(d) if LV F = ’L’,’V’, do the user input lorentz/voigt with linemixing turned on or off
(depending on the setting of IO).

Figure 8 outlines the second stage of the algorithm for run6co2.
For each of the bands, and within each of the above 4 choices, the program proceeds

as follows. First the HITRAN line parameters for the particular band/branch combina-
tion are read in from the hit*.mat saved earlier. The code then computes parameters
such as foreign and self broadening, line strength and so on. This is done in loader.m

Now the code makes some important speed-affecting decisions based on the current
band/branch, and the input high resolution wavevector. Suppose the band lines span
the wavevector range (A,B). A preset lookup table has a set of pairs of numbers (a, b)
outside of which the effects of linemixing can be simply computed from the lorentz
line shape i.e. k = klorentz ×MixRatio. For the current profile conditions, this ratio is
computed on the fly using the sum rules derived by Strow et al. If this ratio is computed
to be negative, it is reset to a very small number (practically zero). The input wavevector
fhigh then can be divided into three regions : one that has wavenumbers that are less
than a, another that has wavenumbers that are greater than b and a third region whose
wavenumbers lie in the interval (a, b).

To compute the ratio, the code has to go ahead and compute the matrices/mixing
coefficients associated with the current band/branch combination. The matlab routines
are typically efitter, wfunco2er, wfun1co2, wgradco2, transpop

The code now loops over the three wavenumber regions defined above :
(a) for the first two regions, the code simply does a lorentz computation, and multiplies
it by the required ratio. Note that in order to speed things up, the computation is done
at the output wavevector resolution, so that no boxcar integrations, or splines, have to
be done. If a birnbaum or cousin factor is required, it is computed for each line and
multiplied in. Thus the overall lineshape in this region is

k(ν) = ratio×
i=F∑
i=1

klorentz(ν, νi, brdi)× χ(ν) (5)

where the sum is over all the lines in the band, νi, brdi being the line centers and broad-
ening respectively, and χ is either the birnbaum factor or 1.00, and ν is the portion of
the output wavevector. The rationale behind the output wavevector being used for the
computation is that the first two wavenumber regions are so far away from the lines in
the band that the optical depth k is both very small and varying very slowly.
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Figure 7:
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For the third region, the code does an entire mixing computation :

(b) If a full mixing computation is required, the code sets up the required matrix
and finds the eigenvalues. The spectra is then built up, at the fine resolution, using the
eigenvalues as described earlier on in this document. If a birnbaum factor is required,
it is computed as follows. For each line in the band, a lorentz line shape is computed,
as is the corresponding birnbaum factor. A vector containing the sum of the products
of the lorentz, birnbaum factors, as well as another vector containing the sum of the
lorentz lines, is kept. The overall full mixing lineshape is then multiplied by the ratio
of thses two sums. Thus the overall lineshape in this region is

k(ν) = kfull(ν, brd, strengths)× χ(ν) (6)

where χ is either 1.00 or computed as follows

χ(ν) =
∑i=F

i=1 klorentz(ν, νi, brdi)× birn(ν)∑i=F
i=1 klorentz(ν, νi, brdi)

(7)

Having done this the code then boxcar averages the result to the output resolution, and
adds on the result to the required part of outarray

(c) If a first order mixing computation is required, the code sets up the required first
order coeffs. The spectra is then built up, at the fine resolution, using the mix coeffs.
If a birnbaum factor is required, it is computed for each line, and then multiplied in.
Thus for LV F = ’L’, the overall lineshape in this region is

k(ν) =
i=F∑
i=1

(klorentz + Yi × f(ν − νi))× χ(ν) (8)

while for LV F = ’V’, the overall lineshape in this region is

k(ν) =
i=F∑
i=1

(kvoigt + Yi × f(ν − νi))× χ(ν) (9)

where the sum is over all the lines in the band, νi, brdi being the line centers and
broadening respectively, χ is the birnbaum factor or 1.00, and ν is the portion of the
highresolution wavevector. Yi are the first order mixing coefficients, which multiply a
term that essentially depends on the distance away from the line center, ν − νi

Having done this the code then boxcar averages the result to the output resolution, and
adds on the result to the required part of outarray

(d) If a cousin computation is required, the code is also broken up into the three
regions above. However, the code does not have to do any of the mixing computations.
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The spectra is then built up, at the fine resolution, for region 3, or at the lower output
resolution, for regions 1 and 2. Thus for birn = ’C’, LV F = ’L’, the overall lineshape is

k(ν) =
i=F∑
i=1

klorentz × χ(ν) (10)

while for for birn = ’C’, LV F = ’L’, the overall lineshape is

k(ν) =
i=F∑
i=1

kvoigt × χ(ν) (11)

where the sum is over all the lines in the band, χ is the cousin factor, and ν is the
relevant portion of the highresolution or outputresolution wavevector. Having done
this the code then boxcar either averages the result to the output resolution, and adds
on the result to the required part of outarray, or directly adds on the result to the
required part of outarray, as appropriate.

Both the birnbaum and cousin computations are done as lookup tables.
Figure ?? outlines the above stages of the core workings of the PQR band/branches

algorithm for run6co2, assuming the user wants to do either a line mixing or a cousin
computation.

6.5 Band details

Each of the bands used for the special linemixing computations in runCO2 are asso-
ciated with a unique identifier, which is approximately equal to the band center. This
identifier enables the code to pull out the lines from the HITRAN database that have
similar quantum numbers. For example, 720 would pull out all HITRAN lines having
the lower vibrational quanta index = 2, upper vibrational quanta index = 5, isotope =
1 (main isotope). This is the Q720 sigpi branch.

The bands are divided into subsets associated with the lower and upper level angular
momenta : sigmapi, deltapi, sigmasigma, pipi, deltadelta. To see which HITRAN
quantum numbers/isotopes are associated with each subset, the user can look at file
makeDAV Ehitlin.m. Only the strongest bands have been included in run6co2.

Since some of the bands in the subsets are associated with isotopes, the code used
to compure the required mixing matrices for some bands within the same isotope, may
be quite different from that for the other bands in the isotope. In particular, computing
the a1, a2, a3 coefficients for the power-energy scaling gap can vary significantly.

Below, copied from makeDAV Ehitlin, is a summary of the bands currently used
for line mixing:

%find all PQR lines for isotope 1 (or 2 or 3) : these are PQR_sigpi
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Figure 8:
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if (band==618)
v_l=2;v_u=3;

elseif (band==648)
v_l=1;v_u=2;isotope=2;

elseif (band==662)
v_l=1;v_u=2;isotope=3;

elseif (band == 667)
v_l=1; v_u=2;

elseif (band == 720)
v_l=2; v_u=5;

elseif (band==791)
v_l=3;v_u=8;

elseif (band==2080)
v_l=1;v_u=8;

%find all PQR lines for isotope 1 : these are PQR_deltpi
elseif (band==668)
v_l=2;v_u=4;

elseif (band==740)
v_l=4;v_u=8;

elseif (band==2093)
v_l=2;v_u=14;

%find all PQR lines for isotope 1 : these are PQR_sigsig
elseif (band==2350)
v_l=1;v_u=9;

elseif (band==2351)
v_l=1;v_u=9; isotope=2;

elseif (band==2352)
v_l=1;v_u=9; isotope=3;

elseif (band==2353)
v_l=3;v_u=23;

elseif (band==2354)
v_l=5;v_u=25;

%find all PQR lines for isotope 1 : these are PQR_pipi
elseif (band==2320)
v_l=2;v_u=16;

elseif (band==2321)
v_l=2;v_u=16; isotope=2;
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elseif (band==2322)
v_l=2;v_u=16; isotope=3;

%find all PQR lines for isotope 1 : these are PQR_deltdelt
elseif (band==2310)
v_l=4;v_u=24;

elseif (band==2311)
v_l=4;v_u=24; isotope=2;

6.6 PQR sigpi

For the Q branches, the code is quite straightforward, except for the 662 band. Since
this is the 3rd isotope (O16 C12 O18) the symmetry is broken and now we can have
many more allowed lines.

For the PR branches, only the 720 branch has the line mixing matrices being com-
puted ... the rest of the bands use k/klor = 0.5

6.7 PQR deltpi

For the Q branches, the code is quite straightforward. For the PR branches, all the
bands use k/klor = 0.5

6.8 PR sigsig

No Q branch mixing done. The strongest lines in the 4 µm region are from this subset.
For the PR branches, full line mixing done. Band 2352 is special because it is a symmetry
breaking isotope.

6.9 PR pipi

No Q branch mixing done. For the PR branches, full line mixing done. Band 2322 is
special because it is a symmetry breaking isotope. In addition, band 2321 needed a
special efitter initiliazation when fitting for missing energy levels.

6.10 PR deltdelt

No Q branch mixing done. For the PR branches, full line mixing done.
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7 General Spectral Lineshape Theory

This section examines the basic lineshape parameters, including line centers, shifts,
widths, and strengths. The standard lineshapes for natural and Doppler broadening are
then presented, followed by a review of collisional lineshapes. Most of this information
is from Dave Tobin’s PhD dissertation [3].

7.1 Molecular Absorption and Beer’s Law

Molecular absorption occurs when a molecule absorbs light and simultaneously makes
a transition to a higher level of internal energy. The absorption of incident photons
decreases the outgoing radiation, and a spectral line is produced. The shape or frequency
dependence of this absorption is often called the lineshape. Because of various factors,
the absorption occurs not only at the resonant frequency of the transition (determined
by the difference between the upper and lower energy levels), but over a spread of
frequencies. These broadening factors lead to a finite width of the spectral line. While
the resonant frequency and the intensity of the absorption are determined primarily by
the structure of the molecule, the lineshape is determined by the molecules’ environment.

The frequency dependence of the absorption coefficient, k(ν), determines the shape
of a spectral line. Beer’s law relates the absorption of radiation through a gaseous
medium linearly to the incident radiation (see Figure 9):

−dI = k(ν)I0Pdl (12)

with the absorption coefficient, k(ν) being the constant of proportionality. −dI is the
decrease in radiation flux over a path length of dl through a gas of constant and uniform
pressure P . Integrating this equation over a homogeneous path length of L yields the
integrated form of Beer’s law:

T (ν) =
If (ν)
I0(ν)

= exp (−k(ν)PL) . (13)

T (ν) is is the transmission at frequency ν. I0(ν) and If (ν) are the initial and final radia-
tion intensities. Thus, the absorption coefficient is related to the observed transmission
by

k(ν) = − 1
PL

ln (T (ν)) . (14)

It should be noted that deviations from the linear form of Beer’s law are only ob-
served at extremely high photon densities. Under atmospheric conditions, however, the
linear dependence of the extinction on the amount of absorbing material and incident
radiation is valid.

UMBC 54



DRAFT UMBC LBL Version 7

Figure 9: A gas cell of pressure P and length L with incident radiation, I0, from the
left. The amount of absorption at frequency ν is determined by the magnitude of the
absorption coefficient, k(ν), the gas pressure, and the path length according to Beer’s
law.

UMBC 55



DRAFT UMBC LBL Version 7

7.2 Line Parameters

The lineshape of a single (non-interacting) transition is commonly characterized by
several parameters including the line center (ν0), line strength (S), and line width (γ).
These are illustrated in Figure 10.

Several spectral line databases are available which provide a compilation of the line
positions, strengths, and widths as well as several other important parameters such as
the lower state energy, pressure induced line center shifts, isotopic abundances, rota-
tional and vibrational quantum indexing, width-temperature exponents, and transition
probabilities. HITRAN[4, 5] (the high resolution transmission molecular absorption
database) is one such database used in this work which is maintained by the Phillips
Laboratory Geophysics Directorate . It currently lists the parameters of over 700,000
rotation and vibration-rotation spectral lines for 31 molecules of atmospheric impor-
tance from 0–23,000 cm−1. This database represents the most accurate compilation of
line parameters. However, due to its size, it is only updated every two to four years
and thus recent state-of-the-art measurements and calculations are not always in the
database and must be obtained elsewhere.

7.2.1 Line Centers

The line center, or position, of a spectral line is determined by the molecular structure,
just as the allowable vibrational-rotational energy levels of the molecule are determined
by its structure. Planck’s relation:

ν0 =
∆E

h
(15)

relates the transition frequency, ν0 (cm−1), to the change in internal energy, ∆E, where
h is Planck’s constant. The line centers are thus determined by the structure and
allowed energy levels of the molecule and by transition selection rules.

Since the line centers do not depend critically upon the interactions with other
molecules, or upon the population of various states, they do not vary significantly with
temperature or pressure. One common exception to this are the very small shifts in
line center with increasing pressure. Just as molecular collisions can disturb optical
transitions leading to increased line widths (discussed later), these disturbances can
also lead to an apparent change in the resonant frequency of the molecule’s wave-train.
Computationally, the shifted position is given by

ν0(P ) = ν0 + P · δν (16)

where P is the total pressure and δν is the pressure induced frequency shift and is
determined either theoretically or experimentally. A more theoretical explanation of
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Figure 10: A spectral line depicting the line center, ν0, and half-width, γ. The line
strength, S, is the absorption coefficient, k(ν), integrated over all wavenumbers ν.
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line shifts which are due to distant collisions was first given by Lenz and more recently
by Breene[6].

7.2.2 Line Strengths

The line strength or line intensity is a direct measure of the ability of a molecule to absorb
photons corresponding to a given transition. It depends upon both the properties of
the single molecule and the relative number of molecules in the upper and lower states.
The strength, S, is defined as

S =
∫

k(ν0, ν)dν (17)

where the integral is over all ν. Experimentally, S can be determined using Equation
17 if k(ν0, ν) is measured. Alternatively, if the functional form of k(ν0, ν) is known,
regression techniques can be used to determine S.

By far the strongest interaction between matter and an incident field of electromag-
netic radiation involves the molecule’s electric dipole moment. The intensity of a dipole
transition is proportional to the square of the matrix element of the dipole moment
operator M :

Ri,j =
∫

Ψ∗i MΨjdV (18)

where dV is a volume element in configuration space and the integral is over all space.
Ψi and Ψj are the wavefunctions of the lower and upper levels of the transition. The
wavefunctions are orthogonal and therefore, if M is unchanged during the transition,
R = 0. Consequently, for a dipole transition to occur, the electric dipole moment
must change between the initial and final energy levels of a transition. Otherwise,
the molecule is not linked to the incident radiation and no absorption occurs. Weaker
transitions can occur, however, for quadrupole transitions even if there is no change in
the dipole moment, although these are not considered in this work.

The line strength is also proportional to the relative populations of the upper and
lower transition levels. In thermodynamic equilibrium the probability of a molecule
being in a specific energy level is given by

Ni

N
= gi exp(− hc

kT
Ei)/Z(T ) (19)

where h is Planck’s constant, c is the speed of light, k is Boltzmann’s constant, T is
the temperature, N is the total number of molecules, Ni is the number of molecules
in energy level Ei, gi is the statistical weight of the level, and Z(T ) is the partition
function given by:

Z(T ) =
∑

i

gi exp(− hc

kT
Ei) (20)

UMBC 58



DRAFT UMBC LBL Version 7

In this work, the partition functions are computed using Gamache’s [7] convenient pa-
rameterization:

Z(T ) = a + bT + cT 2 + dT 3 (21)

where a, b, c, and d have been tabulated for most molecules found in the lower atmo-
sphere. Combining Equations 19 and 20, the relative population of the upper and lower
energy levels is given by:

Nj −Ni

N
=

gj exp(− hc
kT Ej)− gi exp(− hc

kT Ei)
Z(T )

(22)

The line strength is then expressed as

Si,j = σi,j
Nj −Ni

N
(23)

where σi,j are integrated absorption cross sections and are given by

σi,j =
8π3

3h
νi,j |Ri,j |2. (24)

Combining these results yields the full expression for the line strength:

Si,j =
8π3

3h
νi,j |Ri,j |2

gi exp(− hc
kT Ei)

Z(T )
[1− exp(− hc

kT
νi,j)] (25)

Using line strengths determined either theoretically or experimentally at some reference
temperature Tref , the strength can be converted to other temperatures using

Si(T ) = Si(Tref )
Z(Tref )
Z(T )

exp(−hcEi/kT )
exp(−hcEi/kTref )

[1− exp(−hcνi/kT )]
[1− exp(−hcνi/kTref )]

(26)

7.2.3 Line Widths

The line width, or halfwidth, is defined as half the frequency interval between ν0 and
the frequency at which k(ν) has fallen to one half of its maximum value. Values of
line widths in the Earth’s atmosphere can range from 0.0002 cm−1 for conditions where
the molecules are isolated to 0.5 cm−1 for conditions of extreme pressure broadening.
Under pressure broadening conditions, the resulting lineshape near line center is well
approximated as a Lorentzian with a nominal line width of

γ =
2r2

m

P

RmT

(
3kT

m

) 1
2

, (27)
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which has been derived from classical Kinetic theory using the Equipartition theorem
and the Ideal gas law. r s the effective radius of the molecule, m is the molecule’s mass,
P is the total pressure, Rm is the gas constant, and T is the temperature. A typical time
between collisions for an atmospheric gas at room temperature and pressure is ∼ 10−10s,
which leads to a Lorentz width of ∼0.05 cm−1. If the line width, γ0, is determined at a
given pressure, temperature combination (P0, T0), the line width at other conditions is

γ = γ0

(
T0

T

) 1
2
(

P

P0

)
(28)

Thus, the line width increases linearly with pressure and decreases with temperature.
Although this kinetic theory does not result in accurate values of γ0, the pressure depen-
dence is observed in most cases. More commonly, γ0 is determined either experimentally
or calculated with more realistic theories when accurate measurements are not available.
Furthermore, the temperature exponent, 1

2 , is generally replaced with a parameter n,
which is also determined experimentally. The accuracy of n was investigated by Lui
Zheng and Strow [?] for both CO2↔ CO2 and CO2 ↔ N2 collisions: n ' 0.69 for CO2

↔ CO2 collisions and n ' 0.75 for CO2 ↔ N2 collisions. In general, n can vary with
transition for the same molecule. For example, accepted values of n for H2O range from
0.5 to 1. When n is unknown, default values of 0.64 and 0.68 are generally used.

For mixtures of gases, the total line width is the sum of the individual partial widths:

γTOT =
∑

i

γ0,iPi (29)

From quantum Fourier transform theory calculations, the line width for the f ← i
transition is calculated using [8]

γi =
(

nv

2πc

)∑
J2

ρ(J2)σif,J2 (30)

where n is the perturber density, c is the speed of light, v is the mean relative thermal
velocity (v =

√
8kBT/πµ), µ is the reduced mass of the perturber/absorber system, and

ρ(J2) is the density of the perturber state J2. σif,J2 are the absorption cross sections
and are dependent upon which type of interactions are dominant. For example, for
H2O-N2 collisions, the strongest interaction is dipole-quadrupole, yielding

σDQ
if,J2

= πb2
0 (1 + sif,J2(b0)) (31)

where b0 is an impact parameter related to the minimum distance between absorber
and perturber during the interaction and sif,J2 is related to the dipole moment of
H2O, the quadrupole moment of N2, and the impact parameter. For self-broadened
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H2O, the main interaction is dipole-dipole and similar calculations can be performed.
This quantum treatment of line widths represents a large improvement over simple
kinetic theory calculations. Such calculations, however, are most often scaled to agree
with experimental results to obtain the highest degree of accuracy and are included in
spectral line databases whenever accurate measurements are not available or possible.

Experimental studies of line widths can become surprisingly complicated for several
reasons. One common complication is due to the overlapping and blending of adja-
cent spectral lines. Others include excessive experimental noise, badly-characterized
instrument functions, incorrect “background” absorptions, and lack of characterization
of the optical path. Some of these concerns have been reviewed by Gamache et.al.[9].
Furthermore, for some gases such as water vapor, experimental results from different
investigators for the same spectral line lie well outside quoted uncertainties. Larger
systematic and analysis errors, not inaccurate experimental spectra, are most likely re-
sponsible for these disagreements. The case for N2-broadened water vapor line widths
is investigated in detail in section ??.

7.3 Lineshape Theories

The frequency dependence of the absorption coefficient is determined by the molecule’s
physical state and its environment. Broadening factors can be divided into three general
classes. They are (1) natural broadening, (2) Doppler broadening, and (3) collision
broadening. While natural and Doppler broadening can be described with relatively
simple theoretical models, providing an accurate generalized collision broadening theory
is a very challenging problem. Each of these are addressed below.

7.3.1 Natural Broadening

The natural lineshape is best described by considering a stationary, isolated molecule.
If such a molecule is allowed to absorb radiation, undisturbed by any other form, it
will eventually make a transition back to a lower level of internal energy. Consequently,
the molecule has a limited lifetime at any given energy level. The resulting lineshape is
given by

knat(ν) =
S

π

(
γnat

(ν − ν0)2 + γ2
nat

)
(32)

where γnat = 1/τnat is the “natural” line width. Due to the relatively long lifetimes of
these undisturbed molecules, γnat is very small, with values on the order of 10−5 cm−1.
For this reason, natural lineshapes are not observable under atmospheric conditions or
with spectrometers of average resolution.
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7.3.2 Doppler Broadening

The inhomogeneous Doppler lineshape is applicable to conditions encountered in the
upper troposphere and stratosphere. In these cases, the temperature is assumed to
be high enough to produce molecular motion, but the pressure is low enough so that
the molecules experience no collisions; or at least are not subject to strong collisions
which terminate the dipole moment oscillation. At pressures of about 5 Torr or less,
the Doppler lineshape is predominant, with a typical line width of 0.001 cm−1 at 296
K. The molecular motion produces an apparent shift in the observed frequencies and
such broadening is called Doppler broadening.

The shifted Doppler frequency, ν ′, for a molecule moving with a speed vm along the
direction of observation, relative to the observer, is given by

ν ′ = ν0

√
1− (vm/c)2

1 + vm/c
(33)

where ν0 is the un-shifted frequency. For vm � c, ν ′ can be approximated with a
binomial expansion as

ν ′ = ν0

(
1− vm

c

)
(34)

Therefore, for each vm, there exists a corresponding shifted frequency. Given a Maxwell
distribution of velocities within the gas, the density of molecules with velocity vm is
given by

dn = N

(
m

2πkT

) 1
2

exp
(
− m

2kT
v2
m

)
dvm (35)

N is the total number of molecules, m is the molecular mass, T is the temperature, and
k is Boltzmann’s constant. The corresponding absorption coefficient, kD(ν), like the
Boltzmann distribution, has a Gaussian form:

kD(ν) =
S

γD

√
ln 2
π

e
− ln 2

(
ν−ν0
γD

)2

(36)

γD, the line width of the Doppler lineshape, is given by ν0

√
2kT ln 2

mc2
. Notice how quickly

the Doppler lineshape goes to zero far from the line center due to the negative expo-
nential.

7.3.3 Collision Broadening

At pressures greater than ∼ 5 Torr, the collisions between molecules must be addressed.
Collisions are the most important phenomenon to contribute to broadening at these
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higher pressures. In 1906 Lorentz showed that line broadening takes place when ab-
sorbing molecules or atoms collide. If one assumes that a collision takes place during
the time in which radiation is being absorbed, the coherency of the wave train is in-
terrupted. This interruption results in a broadening of the spectral line. Quantum
mechanically, pressure broadening is caused by the broadening of the molecules’ energy
levels by fields produced by the colliding molecules. This is a complex subject, and ex-
act solutions for the absorption coefficient are found only under certain approximations.
The exact treatment of this problem requires the knowledge of the time-dependent quan-
tum mechanical wavefunction of an ensemble of colliding molecules. In general, this has
not been achieved to date and therefore the problem is often approached by developing
empirical or semi-empirical models which simulate the system. In the following sections,
a model leading to the standard Lorentz lineshape is presented, followed by descriptions
of more complex techniques of dealing with collisional broadening.

7.3.4 Lorentz Lineshape

In the simplest treatment, the collisional lineshape is that of a Lorentzian. At high
pressures, collisions occur often and it is unlikely that a molecule is allowed to oscillate
undisturbed for its entire natural lifetime. Instead, the molecule is usually perturbed
by many collisions. This model makes several assumptions which lead to a simple
solution for the absorption coefficient. The molecule’s dipole moment is assumed to
be oscillating with frequency ν0. When a collision occurs at time t, the oscillation
terminates instantaneously. No natural damping is included because the time between
collisions, t, is much less than the natural lifetime, τnat. In other words, exp(−t/τnat) = 1
for all times considered.

It is important to understand the assumptions which have been made for this model.
One of the assumptions is called the impact approximation, which assumes that the time
between collisions is much greater than the duration of a collision, τdur, and therefore,
the behavior of the dipole moment during the collision is negligible. In this case, τdur is
taken to be zero, corresponding to an instantaneous phase shift in the dipole moment.
These types of collisions are also sometimes called adiabatic in that the system has no
time to react to the collisions. The opposite of the impact approximation is called the
quasi-static approximation, in which the collision durations are essentially assumed to
be much larger than the time between collisions. This point is addressed when statistical
lineshapes are discussed. Another assumption made here is that of strong collisions. A
strong collision is taken to be an interaction which terminates the oscillation, leaving
no memory regarding its orientation or other properties before the collision. On the
other extreme, weak collisions are those which have little or no effect in disturbing the
molecule. In this case, collisional effects are only felt as a damping effect after a large
number of weaker impacts. Collisions are also assumed to involve only two molecules,
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and such collisions are referred to as binary collisions. One final assumption is that the
molecules follow classical straight line trajectories between collisions. So in the Lorentz
model, which is often called the billiard-ball model, colliding molecules can be thought
of as quickly moving hard spheres which do not interact with one another until they
actually touch each other.

Fourier analysis of this model wavetrain leads to a spectral distribution of the form

| F{µ(t)} |2= sin2[2π(ν − ν0)t/2]
[2π(ν − ν0)]2

(37)

This expression must be averaged over all possible values of t. From the kinetic theory
of gases, the distance traveled between collisions, l, by a molecule of average velocity
vm has a Poisson distribution:

p(l)dl =
dl

lm
e−l/lm (38)

where lm is the mean free path. Using dt = dl
vm

, the distribution for the time between
collisions is

p(t)dt =
dt

τcol
e−t/τcol (39)

where τcol is the mean time between collisions. Using this distribution, the absorption
coefficient, kL(ν) is found to be

kL(ν) =
S

π

(
γL

(ν − ν0)2 + γ2
L

)
(40)

where γL = 1/τcol is the Lorentz line width. Within this billiard-ball model, τcol is
calculated as lm/vm and has an average value of about 1.5 × 10−10 seconds[6]. This
corresponds to a Lorentz line width of approximately 0.02 cm−1, which is much larger
than a typical Doppler width. Thus, whenever collisions are present, they provide the
primary form of broadening.

This absorption coefficient is called the Lorentz lineshape. It has the same form as
the natural lineshape; the only difference being the value of the line widths. It is useful to
compare the Doppler and Lorentz lineshapes. The Doppler model assumes a Boltzmann
velocity distribution, which goes smoothly to zero at large velocities. Its corresponding
spectral distribution, therefore, also decays quickly in the far-wing (far from line center).
This is not the case for the Lorentz model, which assumes instantaneous behavior during
collisions. The effect of this unphysical temporal behavior is the placement of extremely
high frequency components in the lineshape’s spectral distribution. Consequently, kL(ν)
is too large in the far-wing, and the Lorentz model predicts too much absorption in this
region.
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Despite the apparent shortcomings of the model used for the Lorentzian line shape,
it is very accurate for many applications. The Lorentz lineshape is accurate as long as
two conditions are satisfied: (1) the spectral region of interest is not too far removed
from the line center where the impact approximation results in the prediction of too
much absorption, and (2) there exists no significant overlapping of adjacent spectral
lines. The latter of these two conditions arises because the Lorentz theory assumes
no transfer of intensity from one spectral line to another (often called “line mixing”).
Experimental deviations from the Lorentz lineshape within ∼2–4 γ0 of line center of
isolated lines have not been confirmed for systems of atmospheric interest.

7.3.5 Van Vleck - Weisskopf Lineshape

When describing the procedures used to calculate the Lorentz and natural lineshapes,
the assumption that transitions occur at relatively high frequencies (i.e. infrared) was
made. When computing the Lorentz lineshape, the Fourier transform of the dipole
moment actually yields two terms – one centered about ν0 and the other about −ν0.
The lineshape should be written as [10]

k(ν) =
S

π

(
γ

(ν − ν0)2 + γ2
+

γ

(ν + ν0)2 + γ2

)
. (41)

This shape is more often used in the microwave region of the spectrum, where the second
term of the sum is not negligible. For molecules active in the infrared region, however,
ν0 is large enough such that (ν − ν0) � (ν + ν0) and the resulting lineshape can most
often be safely approximated as Lorentzian. An exception is in “window” regions (far
from any line centers). Another modification to the Lorentz model involves the behavior
of the molecule directly after a collision. In the Lorentz model, we essentially assumed
the wave-function experienced random phase shifts during collisions and immediately
began oscillating again at its resonant frequency. The wave-function, however, does not
experience a random reorientation, but should be distributed according to the Boltz-
mann distribution of the field when the collision occurs[11]. Following this approach
leads to a slight modification of Equation 41:

k(ν) =
S

π

(
ν

ν0

)2 ( γ

(ν − ν0)2 + γ2
+

γ

(ν + ν0)2 + γ2

)
(42)

which is commonly called the Van Vleck-Weisskopf lineshape [10]. Equation 42 is an
improvement over Equation 41 in that (41) predicts no absorption in the limit of zero
resonant frequency, which is not observed experimentally. Equation 42 is also more
acceptable in that it agrees with Debye’s[11] relaxation theory in the same limit.
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7.3.6 Van Vleck - Huber Lineshape

Another similar lineshape which was developed to satisfy the principle of detailed balance
(discussed below) is[11]

k(ν) =
S

π

(
ν

ν0

)
tanh(hcν/2kT )
tanh(hcν0/2kT )

(
γ

(ν − ν0)2 + γ2
+

γ

(ν + ν0)2 + γ2

)
(43)

which is called the Van Vleck-Huber lineshape.

7.3.7 Voigt Lineshape

Before going on to explain more elaborate models, the Voigt lineshape should be intro-
duced. It does not introduce any new physical insight into broadening phenomenon, but
is very useful computationally. The Voigt lineshape is the convolution of the Doppler
and Lorentz lineshapes. For this reason, it assumes Doppler characteristics at low pres-
sure and Lorentz characteristics at higher pressures. Therefore, one single expression for
the lineshape can be used throughout a wide range of pressures. The Voigt lineshape,
kV (ν) is given by

kV (ν) =
k0y

π

∫ ∞
−∞

e−t2

y2 + (x− t)2
dt (44)

with
k0 =

S

γD
, y =

γL

γD

√
ln 2, x =

(
ν − ν0

γD

)√
ln 2 (45)

The Voigt lineshape does assume there is no correlation between collision cross sections
and the relative speed of the colloids. Again, for atmospheric systems this approximation
appears to be quite accurate.

The VanVleck-Huber lineshape can be computed using the Voigt lineshape instead
of the Lorentz lineshape.

7.3.8 General Techniques for Calculating Collisional Lineshapes

The lineshape models have been presented informally in order to provide general physical
insight. However, for more advanced approaches, it is useful to understand the more
formal techniques in which absorption coefficients are calculated. This is needed to help
understand the deviations from Lorentz lineshapes. For more on this, one is refered to
Dave Tobin’s [3] thesis for a discussion, as well as for more references. In particular,
his dissertation describes line mixing for carbon dioxide, as well as intermolecular forces
and potentials used in lineshape calculations for water vapor.

UMBC 66



DRAFT UMBC LBL Version 7

8 Water vapor lineshape

When computing water wapor spectral lineshapes, the effects of the lines far away from
the current region can be included in two ways : by directly individually adding on the
far wings of each line to the current region, or just using the lines in the current region,
plus a lump sum “continuum” contribution. As the far wings lineshapes might not be
lorentz, and also to account for the possibility that the near wing lineshapes might also
not be lorentz, a local lineshape definition is preferentially used, along with a continuum
contribution.

The local lineshape is defined as the lorentz lineshape out to ±25cm−1 minus the
lorentz value at 25cm−1 away from line center. With this definition, the possibility that
the lineshape near linecenter is itself not lorentz, can be modelled by including the effect
into the continuum that has to be added on.

Non-Lorentz H2O lineshapes also have a significant impact within the strong pure
rotational and vibrational bands. This in-band continuum is particularly important for
satellite infrared remote sensing of atmospheric H2O profiles.

For well isolated pressure-broadened water vapor lines in the infrared, the Lorentz
lineshape is very accurate near line center. However, if one uses a Lorentz lineshape,
this generally overestimate the observed absorption in the far-wing atmospheric window
regions and underestimates the absorption within the rotational and vibrational bands.
This means that the actual water vapor lineshape is extremely sub-Lorentzian in the
far-wing and at least somewhat super-Lorentzian in the intermediate and near-wing.
Most experimental studies have focussed on the window regions and so the far-wing
lineshape has been studied more than the near-wing (roughly within 5 to 25 cm−1 of
line center).

Deviations of H2O spectral lineshapes from Lorentz have been studied extensively
for the atmospheric windows at 4 and 10 µm. In general, these deviations are observed
to vary slowly with wavenumber and the anomalous absorption has become known as
the water vapor continuum.

Several characteristics were found to be common to all window region continuum
studies. In general, the continuum absorption [12, 13, for example]: (1) does not change
rapidly with wavenumber, (2) decreases rapidly with increasing temperature for pure
water vapor, (3) is greater for self-broadening than for foreign broadening, (4) is more
significant in regions of weak absorption than in regions of strong absorption, and (5)
displays the pressure dependencies associated with gaseous absorption.

It is accepted that the deviations from the impact theory calculations in window
regions are due to the non-Lorentz behavior of the far-wings of pure rotational and
vibration-rotation water vapor absorption lines.

In the following sections, a review of previous studies of this continuum absorption
is presented. These can be separated into two generally different approaches. The
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first, which is most often adopted in experimental studies, is to express the observed
deviations from Lorentzian behavior through the use of continuum coefficients. With
this method, the cumulative effects of all lines are characterized in a convenient form.
The second approach, which provides more information about the shape of individual
spectral lines, is used in most theoretical studies. χ-functions are often the end result
of this approach.

8.1 A Definition of the Continuum

The definition proposed by Clough is widely used in atmospheric spectroscopy and ra-
diative transfer, particularly in line-by-line codes such as FASCODE[14], GENLN2[15],
LINEPAK[16], and LBLRTM. The “local” absorption for a single transition is defined
as a Lorentz lineshape out to ±25cm−1 from the line center, minus the Lorentz value
at 25cm −1. For several lines, the local absorption is expressed as[17]

klocal(ν) = ν tanh (βν/2) ρref
Tref

T
PH2OL

∑
i

Si

π

{
γi

∆ν2+γ2
i
− γi

252+γ2
i

if |∆ν| ≤ 25cm−1

0 if |∆ν| > 25cm−1

(46)
where Tref = 273.15K, ρref is the absorber number density per atmosphere at Tref ,
β = hc/kT , and ∆ν = ν − νi. All of the continuum measurements presented in this
work are consistent with Equation 46. This is actually a slight modification of Clough’s
definition2, which also includes the negative resonance terms ( γi

(ν+νi)2+γ2
i
). In the in-

frared region (actually for ν > 25 cm−1), the two definitions are equal. The continuum
is then simply defined to be any observed absorption not attributable to the local ab-
sorption. The continuum therefore includes far-wing absorption (beyond 25cm−1 from
line center), absorption due to any near-wing (within 25cm−1) non-Lorentz behavior,
and the Lorentzian value at 25cm−1 within ±25cm−1 of line center (this is often called
the “basement” term). This is illustrated in Figure 11 for a single absorption line. The
“basement” term is a relatively minor part of the continuum and is introduced to ensure
a smooth continuum for computational reasons.

With this definition of the local absorption, the continuum is always a positive
quantity. The basement and far-wing components are certainly always positive. The
near-wing component, which represents the difference between the actual lineshape and
Lorentz within 25 cm−1, is also positive because water vapor has a super-Lorentzian
lineshape in this region. In fact, with this continuum definition, a non-zero continuum
exists even for the Lorentz lineshape. A calculation of the total absorption coefficient
and the continuum absorption (total minus local) using the Lorentz lineshape for the
0-4000 cm−1 region is shown in Figure 12. All of the high frequency components of the

2Equations 6 through 8 of Reference [17] do not reflect the local lineshape definition used in FAS-
CODE. They actually lead to a χ dependent local lineshape, which is not used in the line-by-line codes.
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Figure 11: The local lineshape definition used in this work. The far-wing (beyond 25
cm−1), near-wing (within 25 cm−1), and basement components of the continuum are
labeled.
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absorption are contained in klocal and the continuum is therefore a smoothly varying
function, which can be stored in a look-up table for ease of computation.

In the line-wings, the displacement ∆ν is much greater than the halfwidth γ and
the Lorentz terms can be approximated as γi

∆ν2 . This leads to a quadratic pressure
dependence in the absorption coefficient on PH2O for self-broadened water vapor and a
linear dependence on both PH2O and the broadening pressure, Pf , for foreign broadened
water vapor. Since the continuum is mainly due to line wings, the total continuum
absorption coefficient for all lines is formulated as [12, 17]

kcon(ν) = ν tanh (βν/2) ρref
Tref

T
PH2OL

296
T

(
PH2OC0

s (ν, T ) + PfC0
f (ν, T )

)
(47)

where C0
s and C0

f are the self- and foreign-broadened continuum coefficients at 296K
and 1 atmosphere. To express experimental and theoretical results, the quantities C0

f

and C0
s are often used.

Because absorption in the windows is very weak, all spectra gathering techniques
require very long path lengths. The laboratory studies have focussed primarily on
self- and nitrogen broadening at room temperature or above, while most atmospheric
measurements have naturally looked at air-broadening at room temperature or below.
Most of the results from these measurements are in accord with those of Burch et.al.,
which are discussed below.

8.2 Laboratory Measurements of Burch et.al.

The most notable experimental studies of the water vapor continuum within the fun-
damental ν2 band, are those of Burch and co-workers[18, 12, 19, 20, 21]. The work was
carried out a number of years ago at relatively low spectral resolution (∼0.5 cm−1 at
1500 cm−1). Self and nitrogen broadened spectra were collected for a range of temper-
atures and pressures. Within the band, the wavenumber regions were chosen to be at
the center of the so-called microwindows such that the absorption due to lines within
∼1cm−1 could be ignored and so the low instrument resolution would not distort the
spectra. This led to a relatively small number of continuum measurements (13 points
between 1400 and 1850 cm−1). A compilation of these measurements is shown in Figure
13 for self-broadened water vapor and in Figure 14 for nitrogen-broadened water va-
por. The continuum coefficients shown in these figures have been modified 3 from their
published values to be consistent with Equation 46. Van Vleck-Weisskopf continuum
coefficients are also shown for comparison. Obvious conclusions from these measure-
ments is that the impact theory predicts too much absorption in the window regions at
4 and 10µm and not enough within the rotation-vibration bands. Due to a lack of other

3Thanks to S. A. Clough for providing these data.
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Figure 12: Absorption coefficient calculations using the Lorentz lineshape for 0-4000
cm−1 at ∼2 cm−1 resolution. The total (solid curve) and continuum (dashed curve, as
defined by Equation 46) absorption coefficients are shown. The calculations include the
effects of all lines between 0 and 5000 cm−1. Conditions are: 1 torr H2O, 760 torr N2,
12 m path length, 296K.

UMBC 71



DRAFT UMBC LBL Version 7

laboratory measurements and because these in-band regions are dominated by near-
wing lineshapes, Burch’s measurements have led to most of our present understanding
of near-wing lineshapes and have formed the benchmark for theoretical comparisons
within the ν2 band. Furthermore, they have been used to produce empirical lineshapes
which are used in operational radiative transfer codes and band models which in turn
are used in Global Climate Models. The accuracy of these measurements is therefore
crucial for several applications.

A good review of progress in the theoretical studies of the water continuum is is
Tobin’s thesis, and is not reproduced here.

8.3 Clough’s CKD Continuum Models

Theoretical approaches have been oriented toward modeling far-wing non-Lorentz be-
havior in order to predict radiative transfer in the atmospheric windows and conse-
quently are least accurate in the near-wing of the line, which is also more difficult
to handle theoretically. The very near-wing lineshape is determined primarily by the
long range interaction and the number of collisions per second experienced by the ab-
sorber. The far-wing is determined by the durations of the very fast, close collisions
which are governed by the strong repulsive potential at small separation distances.
The near/intermediate-wing lineshape, however, requires an accurate description of the
absorber-perturber interaction for all intermediate time scales, as well as for all separa-
tion distances and angular orientations. This becomes a complicated two-body problem
involving not only the long range interaction, but also other short-lived electrostatic
interactions which arise at shorter separation distances.

Lacking an accurate intermediate-wing lineshape model, Clough et.al.[17, 22] have
developed empirical models of the continuum to obtain the best overall agreement with
measurements in both the window regions and within the bands. These models are
widely used in a variety of atmospheric applications. Clough’s model expresses the
absorption coefficient as

k(ν) = ν tanh(βν/2)
∑

i

Si

π

(
γi

(ν − νi)2 + γ2
χ(ν − νi) +

γi

(ν + νi)2 + γ2
χ(ν + νi)

)
(48)

χ is an empirical function used to include non-Lorentz behavior and is given by

χ =

(
1− (1− χ′) (ν±νi)

2

252 for |ν ± νi| ≤ 25cm−1

χ′ for |ν ± νi| ≥ 25cm−1
(49)

where χ′ is determined empirically. These models, which are known as the CKD
(Clough, Kneizys, Davies) continuum models, are shown in Figures ?? and ??, along
with the results of Rosenkranz and Ma and Tipping.
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Figure 13: Burch’s measurements of C0
s and impact theory calculations (solid curve)

from 0 to 3000 cm−1. Measurements are shown for temperatures of 296K (circles), 308K
(+’s), and 322K (x’s), and 430K (asterisks).UMBC 73
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Figure 14: Burch’s measurements of C0
f and impact theory calculations (solid curve)

from 0 to 3000 cm−1. Measurements are shown for temperatures of 296K (circles), 308K
(+’s), and 353K (x’s).
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Note that there are separate chi functions for the self and foreign contributions to
the continuum; hence

χ =
P (h20)× χPself + P (for)× χfor

P (h20) + P (for)

The functional form of Equation 49 was chosen because of the known near and
far-wing behavior. The χ-functions were held fixed at 1 at line center, adjusted to
some value in the intermediate wing, and then forced to decay exponentially in the
far-wing. Because Burch’s measurements included in-band as well as window region
measurements, Clough’s χ-functions were forced to assume the correct overall behavior
in the near, intermediate, and far-wing. It should be noted that the form of the χ-
functions between 0 and 25 cm−1 has no direct physical justification, but was adopted
simply to interpolate between the line center and fitted region.

The original CKD model (CKDv0) was developed by fitting Equation 48 (with
the use of line parameters from the 1986 HITRAN database) to match the laboratory
continuum measurements of Burch, which are shown in Figures 13 and 14.

Burch’s measurements and continuum coefficients computed with CKDv0 and by
Ma and Tipping are shown in Figures 15 and 16. Also shown are two subsequent CKD
models: CKDv1 and CKDv2.1. These newer models represent modifications to CKDv0
made to maintain agreement with measurements. For instance, C0

s of the CKDv1 model
is given by

C0
s = C0

s (version0)

(
1− 0.2333

2002

(ν − 1050)2 + 2002

)
(50)

which results in a 23 percent reduction at 1050 cm−1, yielding better agreement with HIS
field measurements, yet remaining compatible with Burch’s laboratory results. Thus,
there are no χ-functions associated with the later CKD versions. Measurements which
have led to CKDv2.1 are discussed in the next section.

The data shown in Figures 15 and 16 for Ma and Tipping’s calculations were provided
by Q. Ma. For these calculations, a Lorentz lineshape was used within 25 cm−1 of line
centers due the inaccuracy of their χ-functions in the near wing. Thus, their coefficients
do not include any non-Lorentz behavior within 25 cm−1. Their coefficients have also
been modified from their original form by this author to include the basement terms to
achieve consistency with the continuum definition.

With an accurate description of the χ-function responsible for the in-band water
vapor continuum, its relation to the observed absorption can be presented. In win-
dow regions, C0

s and C0
f vary smoothly with wavenumber since there are relatively few

strong local absorption lines. Within strong absorption bands, however, the continuum
may be influenced more by high frequency near-wing non-Lorentz behavior and these
continuum coefficients may not vary as smoothly with wavenumber. Figure 17 shows
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Figure 15: Self-broadened continuum coefficients of Ma and Tipping (dashed curve),
Burch (circles, 296K; pluses, 308K; x’s, 322K), CKDv0(solid curve), CKDv1(dotted
curve), CKDv2.1(dash-dot curve).
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Figure 16: Nitrogen-broadened continuum coefficients of Ma and Tipping (dashed
curve), Burch (circles, 296K; pluses, 308K; x’s, 322K), CKDv0(solid curve),
CKDv1(dotted curve), CKDv2.1(dash-dot curve).
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Figure 17: The individual contributions of the far-wing (beyond 25 cm−1), near wing
(within 25 cm−1), and “basement” components to the total continuum absorption based
on the CKDv0 χ-function.
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the individual contributions of the far-wing, near-wing, and basement components to
the total continuum (as described in Figure 11) in the ν2 region based on the CKDv0
χ-function. Although the continuum is dominated by far-wing effects in the wings of
the ν2 band, the near-wing contributions dominate the continuum at the peaks of the
P- and R-branches. By studying the continuum in this region, information about the
near and intermediate wing lineshape can be determined.

8.4 Recent Field Measurements

Recent field measurements have led to modifications in the CKD models. Thériault
et.al. [23] recently recorded atmospheric transmission spectra over a horizontal path of
5.7 km. These spectra were utilized to test the accuracy of the existing H2O continuum.
Their results suggest that, in the wings of the ν2 band, the foreign component of the
CKDv0 continuum had to be decreased by approximately a factor of 2 to recover good
model-measurement agreement. The accuracy of these findings, however, is limited
by the nature of the experiment and the difficulties in characterizing the optical path.
These measurements are shown in Figure 18.

Atmospheric emission spectra from the University of Wisconsin’s High Resolution
Interferometer (HIS)[23, 24, 25] also show that large errors remain in CKDv0. These
spectra are very sensitive to the continuum and provide an excellent test of the models
when the atmospheric state is well characterized. Differences between observed and
calculated high-resolution atmospheric radiances can be as large as 4K in brightness
temperature in-between lines inside the ν2 band when using CKDv0[23, 26, 27].

Clough recently modified his continuum model to obtain better agreement with sev-
eral types of atmospheric observations [22, 23, 25]. In particular, the atmospheric studies
suggested that the nitrogen-broadened continuum near ∼1200 cm−1 was approximately
a factor of 2 smaller than predicted by CKDv0. This improved model (CKDv2.1) reduces
the maximum errors in HIS calculated radiances to ∼2K in-between spectral lines in
the 1200 cm−1 region [28]. However, these errors are highly dependent on wavenumber
and the newer model also appears to have produced slightly worse results (as compared
to CKDv0) further into the band, near the band center. Errors due to CKDv0 and
CKDv2.1 for these measurements have been shown in Figure ??.

9 Carbon dioxide lineshape

Remote sensing of atmospheric temperature and humidity from satellites is dependent
on the ability to calculate observed radiances as a function of the atmospheric state. This
so–called “forward problem” is at the heart of physically–based retrieval algorithms. Ad-
vanced infrared sounders such as the Atmospheric Infrared Sounder (AIRS)[29], which
is scheduled to fly on the Earth Observing System (EOS) PM platform, will measure
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Figure 18: Nitrogen broadened continuum coefficients reported by Theriault. The CKD
models are also shown: solid, CKDv0; dashed, CKDv1; dotted, CKDv2.1.
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radiances in thousands of spectral channels between 3.7µm and 15µm. Physical retrieval
algorithms use some subset of these channel radiances to determine global atmospheric
temperature and humidity, as well as many other atmospheric and surface parameters.

The 4.3µm spectral region, which is dominated by the ν3 vibrational band of CO2,
is particularly useful in retrieving atmospheric temperature profiles. This region and
several Q-branches in the 15µm region are useful because the absorption varies strongly
with wavenumber, thus allowing many levels of the atmosphere to be probed within a
very narrow spectral range.

Deviations from Lorentzian lineshape behavior in CO2 are observed primarily in two
cases: (1) when there is significant overlap of adjacent spectral lines and (2) when the
spectral region of interest is far from the line center. The Lorentz model fails in these
two cases because (1) it neglects the interaction between spectral lines due to inelastic
collisions while absorption is occurring and (2) it treats collisions between molecules as
if they were instantaneous. These two phenomenon are frequently referred to as line-
mixing and the duration-of-collisions effect, respectively. A lineshape which is accurate
for the ν3 band of CO2 must include both effects.

The lineshape proposed here takes into account the effects of both line-mixing and
non-zero collision times. The line-mixing model follows the basic formalism developed
by Smith[30] and Rosenkranz[31]. In this work, instead of doing involved calculations of
the the relaxation rates as in [32, 33, 34], a simple model to approximate the rates is used.
Non-zero collision times are modeled with Birnbaum’s autocorrelation approach[35].

The following section reviews the line-mixing formalism, which is (in principle) not
specific to any spectral region or molecule. The application to the ν3 Σ ← Σ band of
CO2 is made in Section ??.

9.1 Line Mixing

Deviations from the Lorentz lineshape in regions of overlapping spectral lines have been
observed in many cases [36, 37, 38, 39, 40] . In particular, large deviations are found
in infrared Q-branches, where the spectral lines are very closely spaced. Most attempts
[36, 38, 39] to account for line-mixing have used the impact approximation. This simply
means that the theory treats the collisions between molecules as instantaneous and will
therefore be accurate only in spectral regions close to the line centers.

Within an ensemble of colliding molecules, a single molecule is not a conservative
system. Through interactions with the other molecules, its internal energy can be
transformed into other forms of energy throughout the ensemble. For this reason, if
the system is defined as a single molecule, the energy of the system does not have to
be conserved. Quantum mechanically, this means that the Hamiltonian of the system
does not have to be Hermitian and the system can have imaginary energies. The total
Hamiltonian of the molecule is given by H(t) = H0(t) + H1(t). In this expression,
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H0(t) is the Hamiltonian of the molecule without any interaction with its perturbers.
H0(t) therefore has real eigenvalues and its eigenvectors are the stationary states of the
molecule. H1(t) is the Hamiltonian representing the interaction of the molecule with its
perturbers. It could, for example, represent the effect of inelastic collisions. H1(t) has
energies which are partially imaginary.

Collision broadening is determined by the behavior of a molecule when making
a transition between two known states. This implies that transitions should not be
described by two independent functions which model each state separately, but by a
wavefunction which represents the evolution from one state to another. This evolution
is described by the evolution operator, T (t). According to the Schroedinger equation,
T (t) is given by e−ı(H0+H1) t

h̄ . Let the initial and final states of a transition be given by
Φi and Φf . Since both of these are stationary states of the molecule, they are solutions
to H0Φ = E0Φ and have totally real energies. For a transition of duration τt, which
begins at time t = 0, the total wavefunction of the system at various times is:

Ψ(t = 0) = T (0)Ψ(0) ≡ Φi (51)

Ψ(0 ≤ t ≤ τt) = T (t)Φi = Φie
−ı(H0+H1) t

h̄ (52)

Ψ(t = τt) = T (τt)Φi = Φie
−ı(H0+H1)

τt
h̄ ≡ Φf (53)

Since H1(t) has imaginary eigenvalues, Ψ(t) is subject to a damping term which drains
energy from the system, therefore allowing for absorption. To calculate the absorption
coefficient from this model, the autocorrelation function of the electric dipole moment
µ(t) is used. The autocorrelation of µ(t) is given by φ(t) =< µ(0) · µ(t) >, where <>
denotes a statistical average over the entire system. Because µ(t) has contributions from
many different elements of the system, φ(t) will, in general, involve a complicated sum.
The absorption coefficient is then calculated by taking the Fourier Transform of φ(t)
[35]. An expression for the correlation of the electric dipole moment of this system over
the duration of a transition is written as [36]

φ(t) =< µ(0) · µ(t) >=
∑
if

ρi[< Φi(0)|d|Φf (0) > · < Φf (t)|d|Φi(t) >] (54)

where the sum is taken over all possible states. d is the dipole moment operator of the
system and ρ is the density matrix, which is related to the relative population of states
and is assumed to be constant during a transition. Substituting the evolution operator
into this expression, the time dependence of the correlation function is obtained. It
is here that the impact approximation must be made. This allows the interaction
Hamiltonian, H1(t), which is generally a fluctuating, time-dependent interaction, to be
represented by an effective constant interaction [36]. Since H1 is taken to be a constant
in time, its effect on the correlation function is greatly simplified. If this assumption
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were not made, the time dependence of H1 would be required. Instead, only the “time-
averaged” interaction is needed and the details of its time dependence are ignored. With
this approximation, the lineshape is then calculated by taking the Fourier transform of
φ(t). Baranger [36] calculated the lineshape to be

kmix(ν) =
ρ

π
IM

(∑
i

< Φi|[D(ν −H0 −H1)−1]|Φi >

)
(55)

where the sum is over all initial states and D =
∑

f d|Φf >< Φf |d. If H1 is diagonal,
with diagonal elements of ıγj , where γj are the Lorentz widths of the spectral lines, the
resulting lineshape is the sum of many Lorentzians:

k(ν) =
∑
j

d2
jρj γj

(ν − ν0)2 + γ2
j

(56)

where d2
jρj is essentially the line strength. This Lorentzian result shows that the model

obeys the impact approximation. It also demonstrates the role of the off-diagonal ele-
ments of the interaction potential – they are the cause of interaction between spectral
transitions. If the off-diagonal elements of H1 are non-zero, intensity can be transferred
from one line to another, with the “amount” of line-mixing determined by the magni-
tude of the corresponding off-diagonal element of H1. This is why the phenomenon is
often called line-mixing. Thus, a vibration-rotation band cannot be regarded as the sim-
ple sum of individual transitions, but must be treated as a complex interacting system.
The interaction, which is discussed later, is provided by a bath of inelastic collisions.
Inelastic collisions between an absorbing molecule and a perturber can cause the the
absorber to gain or lose rotational energy. If this process occurs while a transition is
occurring, it is possible that intensity is transferred from one spectral line to another.

The line-mixing absorption coefficient was re-written in doubled-state form better
suited for computation of infrared spectra by E. W. Smith [30]. If the eigenvalues of
H0 are the line center frequencies (energy and frequency are used interchangeably here)
and the interaction, H1, is linearly proportional to the pressure P (binary collisions),
kmix(ν) can be re-written as[1, 30, 41]

kmix(ν) =
N

π
IM

∑
j,k

dj � j | [(ν − ν0)− ıPW]−1 | k � dkρk

 (57)

where N is the molecular density of absorbers, dj and dk are the dipole moment matrix
elements corresponding to the radiative transitions |j � and |k �, ν is a diagonal
matrix with � j|ν|k �= νδjk, ρk is a density matrix element that represents the
population difference between the upper and lower levels of the transition |k �, and
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P is the gas pressure. W is the relaxation, or interaction, matrix with off-diagonal
elements, Wj,k(j 6= k), representing the rate, or magnitude, at which collisions transfer
intensity from line k to j and its diagonal elements, Wj,j , representing the line widths
of line |j >>.

Calculating an absorption coefficient for many transitions over a large spectral range
using Equation 57 involves the inversion of a large matrix for each desired frequency.
For this reason, kmix(ν) was re-written as [40]

kmix(ν) =
N

π
IM

(
d ·G(ν)−1 · ρ · d

)
(58)

where G = ν −H and H = ν0 + ıPW. H is diagonalized with a complex matrix A to
get the diagonal matrix L = A−1 ·H ·A. G is also diagonalized by A and kmix(ν) is
written as

kmix(ν) =
N

π
IM

(∑
i

(d ·A)i(A−1 · ρ · d)i

ν − li

)
(59)

where li are the diagonal elements of L. In this form, the calculation of the absorption
coefficient requires only one matrix inversion.

Using time-independent perturbation theory, the second order energy correction for
an interaction potential, H1, is given by

∑
m6=k

|(Φk,H1Φm)|2
Ek−Em

. Following this approach,
and assuming that PWjk/(νj−νk) is small for all lines, Rosenkranz found the first-order
approximation for kmix(ν) to be [42, 31]

k1st(ν) =
N

π

∑
j

Sj

(
Pγj + (ν − νj)PYj

(ν − νj)2 + (Pγj)2

)
with Yj = 2

∑
k 6=j

dk

dj

Wkj

νj − νk
(60)

where Yj are first-order mixing coefficients. For a single transition, this lineshape is the
sum of a Lorentzian and an asymmetric term. Far from the line centers, the asymmetric
terms become proportional to ν−1. In order for k1st(ν) to go to zero in these regions,
the sum of the coefficients must vanish. That is, detailed balance must be obeyed. In
this context, Strow and Reuter[1] showed that detailed balance is obeyed if∑

j

SjYj = 0. (61)

They also used this result to show that, in the far-wing limit, the ratio of mixing and
Lorentz absorption coefficients is a constant[1]:4

k1st

kL
= 1 +

∑
j SjYjνj∑
j Sjγj

(62)

4The ratio of kmix to Lorentz is also a constant in the far-wing.
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This is a useful result because it allows the mixing lineshape to be calculated by simply
multiplying the Lorentz lineshape by a constant in the far wing. k1st(ν) is also useful
because it provides a compact form for expressing the effects of line mixing. The amount
of line mixing for a single line can be represented by the magnitude of the first-order
mixing coefficients. Thus, lines which experience a large amount of mixing will have
Y ’s of large magnitude and those which are Lorentzian will have Y ’s which are zero.
The accuracy of the first order mixing absorption coefficient decreases with pressure.
The largest errors in first-order mixing occur in spectral regions where lines overlap
significantly. As long as this overlap is not too great or as long as the spectral region of
interest is in the far-wing, however, the first-order approximation is accurate.

The only point left to be addressed is the determination of the off-diagonal, or
mixing, terms of W. Direct calculations of these terms are very complex, involving a
detailed knowledge of the intermolecular potentials and energy transfer during a colli-
sion. More often, empirical scaling laws based on energy changes caused by inelastic
collisions are used to model the interactions. Several of these laws have been developed
to model collisions for rotational-vibrational transitions, one of which is the exponential
power energy-gap, or PEG scaling law. The PEG law models the energetically upward
state-to-state inelastic collisional rates as a function of the rotational energy difference,
∆Ej′j . An upward rate going from the state j to state j′ is modeled as

Kj′j = a1

( | ∆Ej′j |
B0

)−a2

exp
(−a3 | ∆Ej′j |

kT

)
(63)

where B0 is the rotational constant and a1, a2, and a3 are adjustable parameters which
are discussed below. Other similar scaling laws are also employed. They include the
modified exponential energy-gap, or MEG scaling law and the ECSL law [43, 44]. All of
these methods have shown to give similar results as the PEG law [?]. A more realistic
model would not only depend on the energy difference between two levels, but would
include rotational and vibrational factors as well.

Detailed balance is obeyed if

Kjj′(2j′ + 1)e−
Ej′
kT = Kj′j(2j + 1)e−

Ej
kT (64)

This relation essentially ensures that energy is conserved and gives the downward rates,
Kjj′ :

Kjj′ = Kj′j
2j + 1
2j′ + 1

e
∆E
kT (65)

a1, a2, and a3 of Equation 63 are determined by equating the width of a spectral
line to the sum of all of the rates which limit the lifetime of that transition via a least-
square fit to the known linewidths [45]. This is based simply on the fact that any rates
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which shorten the molecule’s lifetime in a specific energy state broadens the spectral
line. These rates include all of those which occur in either the lower or upper state of the
transition. Since vibrational energies are much greater than rotational energies, only
collisions between states within the same vibrational level are considered. Therefore,
using line widths extracted from experimental data, a1, a2, and a3 are determined by
requiring

γj ≡Wjj =
∑
j′ 6=j

All Kj′j which limit the transition lifetime. (66)

This is obviously not the exact expression used in calculations; its details depend on the
type of transition which is occurring. This is detailed later when specific symmetries are
investigated. Equation 66 is valid only if elastic reorientation collisions and vibrational
relaxations do not contribute significantly to the widths, which appears to be valid for
CO2-X systems.

The off-diagonal elements of W are then taken to be proportional to the corre-
sponding collisional rates of K. These are the mixing terms. For two rotational levels
which are energetically close, the collisional rate between them is relatively large and
they experience mixing. On the other hand, if two levels are energetically far from each
other, the corresponding K rates are negligible and no mixing occurs.

In order for line-mixing to occur, collisions which connect two spectral lines must
occur in both the upper and lower vibrational states. If, for example, inelastic collisions
occurred in only the upper vibrational state, the only effect would be to limit the
transition lifetime, and therefore increase the line width. This point is significant for
cases in which the collision rates in the upper and lower vibrational states are not equal.

Summarizing the calculational procedures, the relaxation rates, Kjj′ , are first de-
termined by adjusting a1, a2, and a3 so that the sum of all relaxation rates which limit
the lifetime of a transition equals the known line width. This is done using an equation
similar to Equation 66. The off-diagonal elements of W are then taken to be propor-
tional to the corresponding off-diagonal elements of K. The details of this step depend
on the symmetry of the band and is discussed in Section ??. The diagonal elements of
W are equated to the line widths. The absorption coefficients are then calculated using
full- (kmix, Equation 59) or first- (k1st, Equation 60) order mixing. This procedure is
incorporated into a least-squares fitting algorithm in which an adjustable parameter
that controls the magnitude of the off-diagonal mixing terms of W is adjusted to obtain
optimum agreement with measured spectra.

9.2 Duration-of-Collision Effects

In addition to ignoring the effects of line mixing, the Lorentz model is inaccurate because
it is based on the impact approximation. That is, the duration of the interaction
between two colliding molecules is assumed to be negligible. Therefore, the Lorentz
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lineshape is too large at frequencies far from the line centers. A more accurate model
treats the molecules as softer charge distributions with collisions therefore having finite
durations. Just how long the collisions last is difficult to determine, but depends on
how the molecular potentials interact during a collision. Assuming that the collisions
have a finite duration eliminates the need for instantaneous derivatives in the temporal
wave function and therefore decreases the high frequency components of the spectral
distribution. This effect is shown in Figure 19.

This problem is approached by determining the behavior of the dipole moment
during the collision. Birnbaum developed a theory using a versatile empirical correlation
function [46, 47] with known short and long time behavior and derived expressions for
the absorption coefficient as a function of frequency for spectral transitions whose levels
are perturbed by collisions. A flexible model was used:

φ(t) =< µ(0) · µ(t) >= exp

(
τdur − (τ2

dur + y2)
1
2

τcol

)
(67)

with y = (t2−ı2τ0t)1/2 and τ0 = h̄
2kT . τdur represents the mean duration of collisions and

τcol is the mean time between collisions. The lineshape function is then determined by
Fourier analysis of φ(t). At long times, Equation 67 reduces to exp

(
[τdur ± ıτ0 − |t|]τ−1

col

)
and the resulting line shape is Lorentzian with a width of τ−1

col . In terms of the Lorentz
shape (kL(ν)), a lineshape representing an average collision duration of τ2 is given by
[2]

kB(ν) = kL(ν)χB(ν) = kL(ν)AmzK1(z) exp (τ2γj + τ0∆ν) (68)

with
z =

√
(γ2

j + ∆ν2)(τ2
0 + τ2

2 ) and ∆ν = ν − νj (69)

where K1(z) is a modified Bessel function of the second kind, τ0 = 0.72
T

5, and Am is a
constant representing the effect of line-mixing far from band center. χB is independent
of vibrational band except for the mixing factor Am. Although τ2 is expected to decrease
with increasing temperature [47], no explicit temperature dependence is included in this
application.

This “corrective” factor, χB(ν), for the Lorentz line shape removes much of the far-
wing absorption due inherently to the impact approximation. Since we are essentially
multiplying two line shapes, this can be seen as taking the convolution of the Lorentzian
wave train with the correlation function.

5τ0 and τ2 have been converted to units of cm by multiplication by 2πc.
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Figure 19: A cartoon (top panel) illustrating the Lorentz (solid curve) and finite
duration-of-collision (dashed curve) models of the time development of the dipole mo-
ment autocorrelation function when a collision occurs. τ1 is the time between collisions
and τ2 is the collision duration. The bottom panel shows the resulting lineshapes with
the durations-of-collisions model computed with τ2/τ1=0.015.
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9.3 Combined Line-Mixing and Duration-of-Collision Lineshape

Both line-mixing and the duration-of-collision effect have shown to reduce the amount
of absorption in the far-wing limit. Since the line-mixing theory is valid only under
the impact approximation, the combined effects of line-mixing and duration-of-collision
are approximated as if each effect were independent. In order to include the effects of
line-mixing over the entire frequency range, kL(ν)Am in Equation (68) is replaced by
the first order mixing absorption coefficient:

k(ν) =
∑

i

k1st(νi, ν)χB(νi, ν). (70)

This represents the proposed lineshape model. The full line-mixing lineshape kmix(ν)
can also be implemented by using

k(ν) =
kmix(ν)∑

i kLor(νi, ν)

∑
i

kLor(νi, ν)χB(νi, ν)

if the first-order approximation is too inaccurate (which is seldom true for atmospheric
applications). To show the sub-Lorentzian nature of this lineshape, ratios to the Lorentz
profile are shown in Figure 20. Far from the ν3 band center, line-mixing has the overall
effect of scaling the Lorentzian profile by a constant, approximately 0.10. Also in the
far-wing, χB is well approximated by a decaying exponential. One obvious result of
these calculations is that line-mixing is responsible for the majority of the observed
sub-Lorentz behavior directly beyond the band-head.

Summarizing, Equation 70 represents the proposed lineshape model. It includes both
line-mixing and duration-of-collision effects – the two phenomenon responsible for nearly
all deviations from Lorentz lineshape behavior in CO2. Because the variables ζ and τ2

are built into the model, it is capable of producing a wide range of lineshape behavior.
If, for example, ζ and τ2 are set equal to zero, the resulting lineshapes are Lorentzian,
while if ζ = 1 and τ2 � 0, the resulting lineshape is extremely sub-Lorentzian in the
far-wing.
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Figure 20: Ratios of the line-mixing (Equation 60), duration-of-collision (Equation 68),
and combined (Equation 70) absorption coefficients to Lorentz for the fundamental ν3

R-branch computed using ζ=1 and τ2=0.0275. In the far wing, the ratios of line-mixing
to Lorentz is a constant while the finite duration-of-collision effect leads to a decaying
exponential.
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APPENDIX : Computing the lineshapes These appendices duplicate some of the
GENLN2 subroutines that have been used in this Matlab code, to compute lineshape
parameters.

.1 qfcn.m

This function evaluates the correction to the overall line strength, due to the temperature
differing from 296 K. The partition function can be quickly evaluated as a third order
polynomial :

Q(T ) = a + bT + cT 2 + dT 3

where the coefficients a, b, c, d depend on the gasID, isotope. The output from the
function call is a vector containing the ratio Q(296)/Q(T) for the different isotopes.

function [qfcn]=q(A,B,C,D,E,lines,T);

% initialize coefficients vectors for qtips coefficients
a1 = ones(length(lines.ZISO),1);b1 = ones(length(lines.ZISO),1);
c1 = ones(length(lines.ZISO),1);d1 = ones(length(lines.ZISO),1);

% Assign coefficients according to isotope
no_isotopes = max(lines.ZISO);
for i = 1: no_isotopes
ind = find(lines.ZISO == i);
a1(ind) = a1(ind)*A(i);
b1(ind) = b1(ind)*B(i);
c1(ind) = c1(ind)*C(i);
d1(ind) = d1(ind)*D(i);

end

% Evaluate partition functions at desired temperature and 296K
Qt = a1 + b1*T + c1*T^2 + d1*T^3;
Q296 = a1 + b1*296.0 + c1*(296.0^2) + d1*(296.0^3);

qfcn=Q296./Qt;

.2 broad.m

This function computes the line broadening, as a function of total and self pressures,
and layer temperature. Pressures are in atmospheres.
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The code starts out differently for CO2, for water and for the rest of the gases, as
follows, for individual lines :
(a) water : if self broadening ≤ ε then
self broadening = 5*air broadening
else
self broadening = self broadening
(b) others : if self broadening ≤ ε then
self broadening = air broadening
else
self broadening = self broadening
The total broadening is then

brd = airbroadening ∗ (press− pressself) + selfbroadening ∗ pressself

brd = (296.0/T )pwr ∗ brd;

(c)CO2 : (done more rigorously for individual PQR lines in run6co2)
if self broadening ≤ ε then
self broadening = 0.0
else
self broadening = self broadening
The total broadening is then

brdfor = airbroadening ∗ (press− pressself) ∗ (296.0/T )pwr

brdself = selfbroadening ∗ (press− pressself) ∗ (296.0/T )0.685

brd = brdself + brdfor

function [brd]=broad(press,press_self,press_ref,air,self,pwr,T,iGas)
%compute the broadening by combing air and self broadening
%remember units are in cm-1 per atm at 296 K, so we need the pressures
% press = current AIRS pressure in atm
% press_self = current self pressure in atm
% press_ref = current reference pressure in atm
% air = air broadening cm-1/atm at 296 k
% self = self broadening cm-1/atm at 296 k
% pwr = power relationship to scale brd wrt temperature
% T = temperature
%iGas = GAS ID

%this eqn is from pg 31 of Genln2 manual
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%%%brd=air*(press-press_self)/press_ref + self*press_self/press_ref;
%assume press_ref = 1.0 atm

if iGas ~= 2
%this is the vectorised code
dummysmall = (self < eps);
dummybig = (self >= eps);
slfb=self.*dummybig;

if (sum(dummysmall) > 0)
if (iGas == 1)
slfs=(5*air).*dummysmall;

else
slfs=air.*dummysmall;
end

else
slfs=zeros(size(self));
end

slf=slfs+slfb;

brd=air*(press-press_self) + slf*press_self;
brd=(296.0/T).^(pwr).*brd;

else
%this is the vectorised code
dummysmall = (self < eps);
dummybig = (self >= eps);
slfb=self.*dummybig;

if (sum(dummysmall) > 0)
slfs=air.*dummysmall;

else
slfs=zeros(size(self));
end

slf=slfs+slfb;

brdf=(press-press_self)*air.*(296.0/T).^(pwr);
brds=(press_self)*slf.*(296.0/T).^(0.685);
brd=brdf+brds;
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end

.3 findstren.m

This subroutine finds the line center strength. It first changes the linestrength that is in
the HITLIN database back to the units that are in the HITRAN databse by multiplying
by Avogadros number * 1000

s00 = s0 ∗ 6.022045e26

The line strength is then found from

S(T ) = US(296)
Q(296)
Q(T )

sbse

where U = gas amount in GENLN2 units of kiloMoles/cm2, S(296) is the line strength
read off the tape, Q(296)/Q(T) is the partition function correction, sb is a Boltzmann
factor accounting for lower state population at temperature T (and hence depending on
energy of lower state Eli), and se accounts for detailed balance.

function [strength]=find_stren(qfcn,v0,T,E_li,s0,amt)
%renormalises the strength based on eqn in pg 31 of Genln2 manual
%qfcn = Q(T)/Q(296)
%v0 = central wavenumber
%T = temperature
%s0 = strength
%E_li = lower state energy
%amt = gas amt (kilomolecules/ cm2)

s00=s0*6.022045e26; %or could do amt=amt*6.022e26
c2=1.4387863; %K/ cm-1 from Genln2 manual
sb=exp(-c2*E_li/T)./exp(-c2*E_li/296.0); %boltzman factor (distr at T)
se=(1-exp(-c2*v0/T))./(1-exp(-c2*v0/296.0)); %adjust for detailed balance

strength=amt*(qfcn’.*s00.*sb.*se);

This is the individual line strength used in the computations of the lines, whether
they are lorentz or voigt or doppler or ......
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