
kCARTA: An Atmospheric Radiative
Transfer Algorithm using Compressed

Lookup Tables

Sergio De Souza-Machado, L. Larrabee Strow,
Howard Motteler and Scott Hannon

Physics Department
University of Maryland Baltimore County

Baltimore, MD 21250 USA

Copyright 2002
University of Maryland Baltimore County

All Rights Reserved
v1.11,1.12,1.14 November 7, 2010

Sergio De Souza-Machado: sergio@umbc.edu
L. Larrabee Strow: strow@umbc.edu

DRAFT kCARTA Version 1.11,1.12,1.14

Contents

1 Introduction 8

2 Installing and running kCARTA 12
2.1 Distributing kCARTA . 12
2.2 Installing kCARTA . 12
2.3 Compiling the packages . 13
2.4 Checking the kCARTA installation 15
2.5 Checking the kCARTA installation 16

3 A Walk Through a kCARTA Session 18

4 New Spectroscopy used by kCARTA 27

5 Units and Definitions 30
5.1 Note about computed fluxes . 35

6 Using KLAYERS : change point profile to layer averaged profile 37
6.1 Compiling kcarta . 37

7 Using RTSPEC : producing the Mie Scattering tables 37

8 kCARTA source files 42

9 Required data files 44

10 kCARTA BANDS 48

11 Water isotopes 49

12 Compile time file kcarta.param 49

13 Compile time file scatter.param 56

14 The Driver Namelist File 56
14.1 nm params (optional) . 58
14.2 nm frqncy (mandatory) . 64
14.3 nm molgas (mandatory) . 65
14.4 nm xscgas (optional) . 66

UMBC 2

DRAFT kCARTA Version 1.11,1.12,1.14

14.5 nm prfile (mandatory) . 66
14.6 nm weight (optional) . 69

14.6.1 format iN list of weights 70
14.6.2 format iN -1 rW -1 . 71
14.6.3 format iN -1 rW iG . 71
14.6.4 Detailed example . 71

14.7 nm radnce (optional) . 72
14.7.1 kRTP = -2,-1,0 . 72
14.7.2 The Emissivity and Solar Reflectance Data Files 79
14.7.3 kRTP = +1 . 80
14.7.4 Fractional Layers . 82

14.8 nm output (mandatory) . 84
14.8.1 Output Gas Paths (Option 1 : iaPrinter(iI)= 1) 86
14.8.2 Output mixed paths (Option 2 : IaPrinter(iI)=2) 91
14.8.3 Output radiances (Option 3 : iaPrinter(iI) = 3) 94

14.9 nm jacobn (optional) . 99
14.10nm nonlte (optional) . 100
14.11nm scattr (optional) . 106

14.11.1kRTP = -2,-1,0 . 106
14.11.2kRTP = +1 . 115

14.12nm spectra (optional) . 118
14.13nm endinp (mandatory) . 120
14.14Sample template files . 120

15 Driver Namelist File : Important Points to Remember 120
15.1 General . 121
15.2 RTP file . 122
15.3 Profiles and Weights . 123
15.4 Radiances and Jacobians . 123
15.5 Output . 124

16 kCARTA run-time architecture 126

17 Binary Output Files from a kCARTA run 129
17.1 Binary Output Files :kLongORShort = 0 129

17.1.1 The MAIN HEADER . 130
17.1.2 The DATA . 130

17.2 Binary Output Files :kLongORShort = ±1 131

UMBC 3

DRAFT kCARTA Version 1.11,1.12,1.14

17.2.1 The MAIN HEADER . 131
17.2.2 The path spectra/mixed path spectra/radiance DATA . . 134

17.3 The Jacobian file . 137
17.4 The Jacobian DATA . 139
17.5 The Flux file . 142
17.6 The Flux DATA . 143
17.7 Reading the binary output file from a kCARTA run 145

17.7.1 readkcstd.m . 145
17.7.2 readkcarta.m . 145
17.7.3 readkcarta.f . 146
17.7.4 readjacob.f,readjacob.m and readkcjac.m 147

18 Additional Programs and Readme Files 147

19 Science : Radiance and Jacobian calculations 150
19.1 Fractional layers . 150
19.2 Broadening of the lines . 152
19.3 Radiative transfer algorithm . 153

19.3.1 Background thermal radiation 154
19.3.2 Solar radiation . 157
19.3.3 Upward looking instrument 157

19.4 Jacobian algorithm . 158
19.5 Cross section and water continuum jacobians 159
19.6 solar and background thermal Jacobians 160
19.7 Weighting functions . 161
19.8 Miscellaneous notes about kCARTA Jacobians 161

20 Science : NLTE and TWOSTREAM scattering 162
20.1 Non LTE computations . 162

20.1.1 Computing the optical depths 162
20.1.2 Computing the source term for radiative transfer equation 164
20.1.3 Solution to the Radiative Transfer Equation 165

20.2 TWOSTREAM scattering . 165

21 Significant Changes from v1.10 to v1.11 171

22 Significant Changes from v1.09 to v1.10 171

UMBC 4

DRAFT kCARTA Version 1.11,1.12,1.14

23 Significant Changes from v1.08 to v1.09 172

24 Significant Changes from v1.07 to v1.08 173

25 Significant Changes from v1.06 to v1.07 174

26 Acknowledegement 175

List of Tables

1 Glossary of terms used in document 31
2 Compile time parameter files. 45
3 Run time data files. 45
4 Other data files. 46
5 Parameter file listing. 47
6 Setting up compile time file kcarta.param 51
7 Setting up parameters in nm params 59
8 Diffusivity Options. 78
9 Output options. 85
10 Output options for iaPrinter(iI)=1 86
11 Output options for iaPrinter(iI)=2 91
12 Output options for iOutputOption=3 94
34 Utility programs. 147

List of Figures

1 Translating the output file. 17
2 Files needed to run kCARTA. 28
3 Sample output radiance spectrum. 29
4 Sample flux computation. 38
5 Water and total optical depths in 10 um window. 89
6 Water and total optical depths in 10 um window. 90
7 NLTE plots : Comparison of kCARTA, GENLN to actual AIRS

data. 107
8 Scatter plots : Downlook instrument using RTSPEC 116
9 Scatter plots : Uplook instrument using TWOSTREAM 117
10 Example of a NLTE computation using kCARTA and GENLN2 . 166

UMBC 5

DRAFT kCARTA Version 1.11,1.12,1.14

ABSTRACT

kCARTA is a radiative transfer code for a non-scattering Earth’s atmosphere. It
can be used to output monochromatic gas optical depths, layer-to-space trans-
mittances and radiances. In addition, it can also do clear sky radiative transfer
computations, or radiative transfer computations in the presence of scattering.

In the case of clear sky radiative transfer, kCARTA can compute and output
analytic Jacobians with respect to temperature and gas amount. As well as the
layer Jacobians being output, kCARTA dumps out a separate file which contains
the surface temp and columngas jacobians (for a x0.1 column gas amount per-
turbation).

The user can easily change satellite viewing angles and surface boundary con-
ditions. As the absorptions coefficients have been precomputed, the spline inter-
polations required to compute the optical depths for arbitrary gas profiles can be
done very rapidly, as can the the spline derivatives needed for the Jacobians. This
makes kCARTA very fast. kCARTA v1.03+ allows the user to subdivide the lower
atmosphere layering structure, and then clump together the upper atmosphere
layers, thereby allowing the program to calculate radiances for an uplooking in-
strument more accurately. The namelist files required to steer a run are easy to
create. We hope that the ease of use, range of features and speed of kCARTA,
make it a useful tool.

In addition to the main kCARTA source code, some packages need to be picked
up and linked/compiled with the kcarta code. One is KLAY ERS, which allows
an user to input a radiosonde or retrieved point profile, and output a layer averaged
profile that kCARTA can use. Another is the RTP package, which is a AIRS Level
II file format. To maintain compatibilty with the AIRS products, kCARTA allows
the user to completely or partially interface with the RTP file format, which
can contain the layer averaged profile and associated atmosphere definitions (and
convolved radiances).

We have written and tested a twostream kSCATTER code, which allows fast
scattering computations even in the presence of a solar beam. More well known
scattering packages have also been integrated into the code, such as DISORT
and RTSPEC. To produce the Mie scattering parameters required by both these
codes, we have packaged RTSPEC, as it contains the code necessary (sscatmie.f)
to produce these parameters for ice and water clouds. In addition, for general
aerosols, we have interfaced the OPAC database, which contains general aerosol
properties, with sscatmie.f Along with all this, we provide the Fortran and Mat-
lab source code that enables on to read the output from kCARTA.

UMBC 6

DRAFT kCARTA Version 1.11,1.12,1.14

In addition, we have recently begun implementing NonLTE computations into
kCARTA. As the code essentially performs a line by line spectroscopic computation
for the layers in question, this significantly slows down the code! Currently the
code is optimized for the CO2 4.3 um branch, and closely parallels the GENLN3
code. In addition, we have already included first order linemixing for the R branch
of the strongest Σ − Σ band (vib center ' 2349 cm−1), in the 2380 - 2430 cm−1

temperature sounding region, along with a “chi function” to bring it more into
agreement with the full kCARTA line mixing.

This document is very much a work in progress. Some major omissions include
references, significant examples of kCARTA output, and comparisons of kCARTA
output to observed spectra. These omissions will be rectified in the future. Please
give us your feedback on both the code and the documentation! This manual
should work for v1.11+.

UMBC 7

DRAFT kCARTA Version 1.11,1.12,1.14

1 Introduction

kCARTA stands for “kCompressed Atmospheric Radiative Transfer Algorithm.”
This is an infrared, “monochromatic” radiative transfer algorithm written for a
one dimensional non-scattering Earth atmosphere. For a downward looking instru-
ment, in a clear sky, the surface term and layer emission terms are automatically
included in the radiative transfer calculation. In addition, reflected thermal and
solar terms can also be included :

R(ν) = Rsurface(ν) + Rlayer emission(ν) + Rthermal(ν) + Rsolar(ν) (1)

where the terms are the surface, layer emissions, reflected thermal and solar re-
spectively. The reflected thermal term is computed accurately by determining
(monochromatically) the layer to ground cumulative sum of absorption coeffi-
cients, and then using an optimum diffusive angle based on a parameterization of
angle as a function of this cumulative sum. This makes the inclusion of reflected
thermal in the code quick and accurate. By differentiating the radiance equa-
tion with respect to a layer gas amount or temperature, the radiance Jacobian is
obtained. Dropping the surface and reflected thermal terms enables kCARTA to
compute the radiance measured by an upward looking instrument as well. The
program can either assume a plane parallel atmosphere, or include effects on the
satellite viewing angle due to the curvature of the earth.

The absorption coefficients used by the code are computed using a database
of look-up tables. The look up tables are compressed, using a Singular Value De-
composition (SVD) technique, to produce our kCompressed database. The point
spacing of the current database is 0.0025 cm−1, which is an average over five points
spaced at 0.0005 cm−1. To compute the absorption coefficients for an arbitrary
profile, the look-up tables are (cubic) spline interpolated in temperature, and
scaled in gas absorber amount. These splines allow us to easily compute the ana-
lytic temperature derivatives, from which we can compute temperature Jacobians.
kCARTA also dumpus out an adiditional file which has radiances computed assum-
ing the surface temperature and gas column amounts have increased by 1K and
a factor of 0.1 respectively (this second file can be read in using readkcBasic.m).

Taking into account the view angle correction, if τi is the optical depth due to
gas G at layer i, given by τi = qiKi/µi where the symbols respectively stand for op-
tical depth (dimensionless), gas amount (kmoles/cm2), gas absorption (cm2/kmol)
and cos(viewangle), then the finite diference colum gas jacobian is given by the
difference between the new and unperturbed radiances δr = rnew−r−0 when the

UMBC 8

DRAFT kCARTA Version 1.11,1.12,1.14

gas amounts in layers 1 to N are perturbed by a fraction δ. The (finite differences)
column jacobians can be obtained from the (gas) layer analytic jacobians using

δr =
∂r

∂q1

δq1 +
∂r

∂q2

δq2 + ... +
∂r

∂qN

δqN

or
δr = J1δq1 + J2δq2 + ...JNδqN

Usually we take a constant perturbation to the column ie ql → q1(1 + f) where
f � 1. Then δql → fql and δr = f{J1q1 + J2q2 + ... + JNqN}. For example, for a
2 layer atmosphere the upwelling radiance (without background thermal or solar
terms)jacobian terms Jl is

r = εB(Ts)exp(−q1K1/µ1)exp(−q2K2/µ2) +

B(1)(1− exp(−q1K1/µ1))exp(−q2K2/µ2) +

B(2)(1− exp(−q2K2/µ2))

from which the layer jacobian terms Ji reduce to

J1 =
∂r

∂q1

= −K1

µ1
εB(Ts)exp(−q1K1/µ1)exp(−q2K2/µ2) +

−K1

µ1
B(1)(exp(−q1K1/µ1)exp(−q2K2/µ2)

J2 =
∂r

∂q2

= −K2

µ2
εB(Ts)exp(−q1K1/µ1)exp(−q2K2/µ2) +

−K2

µ2
B(1)exp(−q1K1/µ1)exp(−q2K2/µ2) +

−K2

µ2
B(2)exp(−q2K2/µ2)

The output order is same as in regular jac file ie gases followed by STEMP.
The current database spans 605 cm−1 to 2805 cm−1, broken up into chunks

that are 25 cm−1 wide. One hundred pressure layers are used to generate the
database, from 1100 mb down to 0.005 mb. These pressure layers are the same as
those used for the AIRS (Atmospheric InfraRed Sounder) Fast Forward Model,
for which kCARTA is the “Reference Forward Model.”. The temperatures in the
spectroscopic database are from the U.S. 1962 Standard Profile, as well as ten
temperature offsets (in increments of± 10K) on either side of the Standard Profile.
The current spectroscopic compressed tables use the HITRAN98 database for both

UMBC 9

DRAFT kCARTA Version 1.11,1.12,1.14

line-parameters and cross-sections. The full and first-order CO2 linemixing is from
refining the modeling undertaken by David Tobin. It should be more accurate
than that currently in GENLN2. in addition, we have used the latest O2 and
N2 continuum models (see Lafferty and J.-M. Hartmann et al in Applied Optics
1996, 1997). Other updates to spectroscopy include the “local” water lineshape
as defined by CKD, and the CKDv0, 2.1, 2.3 and 2.4 water continuums; in the
future we will also add in the χ function developed by D. Tobin.

kCARTA is not limited to these pressure levels/layers. klayers.x is a code,
supplied separately from the kCARTA distribution, that changes a user supplied
point profile to a kCARTA layers averaged profile. The default behaviour is to
use to predefined 100 AIRS layers. However, the savvy user can use klayers.x to
change the pressure levels; these changes then percolate back to kCARTA.

To maintain compatibility with the AIRS products, for which kCARTA has
been developed, the RTP file format and associated libraries need to be linked
into kCARTA. These files can contain the AIRS profile and the atmosphere def-
initions (such as surface pressure and temperature, solar reflectance and surface
emissivity). kCARTA allows the user to either completely or partially use the in-
formation in these files.
WARNING : If you wish to use RTP, your compiler needs to be able to support
structures. Currently Absoft, PDF and SGI do, but g77 does not

In addition, we are adding on more features onto the existing radiative transfer
algorithm. Currently, it can compute the radiances for either an upward or down-
ward looking instrument, in a clear atmosphere. The top of the atmosphere, and
the earth’s surface, can be arbitrarily set within the pressure level extremes. v1.04
allows the user to compute the upward and downward fluxes. Two well known
scattering packages, one developed by Frank Evans et. al RTSPEC and the other
by Knut Stamnes et al DISORT has been worked into the kCARTA algorithm.
In addition we have written our own twostream scattering code TWOSTREAM.

We are also working on a perturbative solution to the radiative transfer equa-
tion, but it has stalled (till Mathematica can solve one of the integrals). In addition
we have used the PCLSAM (Parameterization of Cloud Longwave Scattering for
use in Atmospheric Models) implementation of Chou, Lee, Tsay and Fu’s method.

To run any of these scattering codes, one needs the MIE scattering tables gen-
erated by F. Evans “sccatmie” code. While DISORT is very well tested, it is much
slower than RTSPEC. RTSPEC runs very fast, almost as fast as nonscattering
kCARTA, but cannot include the effects of a solar beam. TWOSTREAM is a
twostream code that runs fast and can include solar beam effects. PCLSAM also

UMBC 10

DRAFT kCARTA Version 1.11,1.12,1.14

runs very fast and allows a soalr beam.
WARNING : If you wish to use DISORT, then your compiler must have the
autodoubling option, so as to turn REAL variables into DOUBLE PRECISION
variables. If not, then edit file “scatter disort code.f” and change all occurences
of real to double precision

The kCARTA Makefile produces two different executables.

• kcarta.x contains all the features of kCARTA (optical depths, clear sky
radiative transfer, clear sky jacobians and fluxes, SCATTERING radiances
and fluxes. However, this version uses a LOT of memory

• bkcarta.x contains only the most basic features of kCARTA (optical depths
and clear sky radiative transfer). This version uses very little memory.

The speed and features of the code make it an appealing alternative to other
existing “line by line” codes such as GENLN2 and LBLRTM. The accuracy of the
database has been extensively compared to GENLN2. kCARTA should contain the
latest spectroscopy/lineshape information. Furthermore, the code now allows the
user to input a set of externally computed absorption spectra, at various kCARTA
chunks, for one gas. The transmittances computed by kCARTA are smooth and
well behaved, which will allow people to develop fast-forward models.

kCARTA is comparatively easy to use. After first picking up and compling the
RTP and KLAY ERS packages, kCARTA can be compiled, with the right array
sizes, paths to include files and libraries being set in files INCLUDE/kcarta.param,
INCLUDE/pre defined.param, INCLUDE/post defined.param and Makefile. Run time
options are set from one driver namelist input file. We now have gone away from
the GENLN2 style driver input files. kCARTA is now namelist file driven. However,
for users that still wish to use the older GENLN2 style driver input files, we have
provided a translator code between the old input file and the new namelist (only
supported upto v1.09).

The driver namelist file contains information such as start/stop frequency,
atmosphere defining information, gas ID’s to be used, and so on. A layer profile
file will also be read in at this point. Once the kCARTA run is complete, supplied
FORTRAN or MATLAB files can be used to read in the data.

kCARTA has been written so that it can process one profile at a time. (Note
that while an RTP file can contain more than one profile, kCARTA can only pro-
cess one of the profiles per run). Once this profile has been read in, a well written
driver input namelist file can be used to perform many tasks in one run. For

UMBC 11

DRAFT kCARTA Version 1.11,1.12,1.14

example, it can be used to compute radiances for many different combinations,
such as with or without solar radiation, with or without background thermal ra-
diation, different surface temperatures or spectrally varying emissivities, different
start/stop pressures and so on. For each of these combinations, clear sky radiance
Jacobians can be computed and output. In the same run, kCARTA can be used
to output layer-to-space transmittances for various gas combinations, such as all
gases combined, all gases except water, all gases except ozone and so on. The
user can also choose to output the optical depths of any of the gases read in from
the profile. Once a kCARTA run has ended, the user can read in the data us-
ing the supplied readers, or modify the readers to convolve the data over wanted
instrument response functions.

2 Installing and running kCARTA

This is for the user that wants to install and use kCARTA as quickly as possible.

2.1 Distributing kCARTA

The distribution is divided into three parts :

• Main tarfile kcartaY Y Y.tar where Y Y Y is the version number. This will
contain the entire source code distribution (which includes the radiative
transfer code kCARTA, and some Matlab and Fortan readers). There are
also some additional data files, and the documentation. This is about 80Mb

• Bugfix tarfile kcarta bugfixY Y Y.tar where Y Y Y is the version number.
This will contain the bugfixes, mainly to the radiative transfer code kCARTA.
This tar file is about 20Mb

• kCompressed Database : about 600Mb, supplied on CDs. We supply two
versions, the big endian or the little endian versions

2.2 Installing kCARTA

Having obtained the above three, the user can now proceed to install kCARTA:

UMBC 12

DRAFT kCARTA Version 1.11,1.12,1.14

• Untar kcartaY Y Y.tar : this will create a main subdirectory, named kCARTA,
as well as many subdirectories containing the source code, scripts, data files
and so on.

• Untar kcarta bugfixY Y Y.tar : This will overwrite the relevant source code
files with the latest ones that are deemed bugfree.

• Install datafiles : Under the KCARTA/DATA subdirectory, the user can in-
stall (or provide symbolic links to) the CompDataBase and WaterDataBase
files provided in the diskettes containing the kCompressed Database

• Create a WORK directory : Create directory WORK under the KCARTA
directory

2.3 Compiling the packages

Now the source code compilation can begin. There are three main sets of code that
have to be compiled. We will decribe the compilation assuming the user is going
to use the 100 AIRS pressure layers/levels, instead of changing the pressure levels.
Before compiling each of the three packages described below, the user should edit
the relevant Makefile so that his/her preferred F77 compiler will be called. We
have tested the package mainly on Unix style SGI and Absoft machines. The flags
for these compilers are

SGI Fortran

SGI compiler options

-u : turn off implicit typing of variables

-g : generate debugging information (turns off optimization)

-C : do run time subscript range checking

-w0 : inform about unused variables

-O3 : heavy optimization

-64 : 64-bit objects (libraries must match)

Linux with Absoft Fortran

Absoft compiler options

-f fold all names to lower case

-N109 fold all names to upper case

UMBC 13

DRAFT kCARTA Version 1.11,1.12,1.14

-W wide source file

-w suppress warning messages (absoft is more fussy than SGI or g77)

-A alignment warnings

-C check array bounds

-O some optimizations

-N3 add record info to unformatted files

-s static allocation

-N2 force intrinsic double functions

-N113 force double precision

-N114 force untyped variables as warnings

If Absoft is used, since it is quite fussy, there might be a few warning messages
produced during the compilations.

• SRC symbolic link : At the main KCARTA subdirectory, make sure that
the “SRC” symbolic link points to “SRCv1.11”

• BLAS library : If your computer has a BLAS library, you can skip this part.
Else go to the KCARTA/LIB/blas.ref subdirectory, and type “make” (at
present the Makefile assumes a LINUX Absoft F77 compiler.

• klayers Go to KLAYERS/Src. Edit the “Makefile” so that the compiler
options are those that exist on your machine. Type “make”. This should
produce a file klayers.x.

• kcarta The kCARTA Makefile can make one or all of three different ex-
ecutables. For the basic distribution that will satisfy most people, only
bkcarta.x is produced. Go to KCARTA/SRC. Edit the “Makefile” so that
the compiler options are those that exist on your machine. Edit the little
endian vs big endian part of the “kcarta.param” file, so that the correct
paths are set for the data files (ensure that the kCompPath,kCO2Path,
kCOusin CO2Path and kWaterPath strings point correctly to the database
files, while kCKDPath,kSolarPath and kXsecFile point to the correct be vs
le files). Type “make”. If everything compiles ok, file bkcarta.x will appear
in the KCARTA/BIN directory

– kcarta.x contains all the features of kCARTA (optical depths, clear
sky radiative transfer, clear sky jacobians and fluxes, SCATTERING
radiances and fluxes. However, this version can use a LOT of memory

UMBC 14

DRAFT kCARTA Version 1.11,1.12,1.14

– bkcarta.x contains only the most basic features of kCARTA (optical
depths and clear sky radiative transfer). This version uses very little
memory.

• readers with fseek Go to KCARTA/UTILITY. If your compiler supports the
“fseek” subroutine, type “make” at the prompt. If everything compiles ok,
file readkcBasic.x will appear in the KCARTA/BIN directory. Note that
Absoft F77 can act funny with the fseeks, so it might be better to use the
g77 compiler here. If this is the case then edit files readkcBasic.f and
readbinary.f , replacing iDummy = fseek(,...) with CALL fseek(,...) with
as well as removing FSEEK from the local variables declarations

• readers without fseek Go to KCARTA/UTILITY/READwoFSEEK. If your
compiler does not support the “fseek” subroutine, type “make” at the prompt.
If everything compiles ok, file readkcBasic.x will appear in the KCARTA/BIN
directory.

2.4 Checking the kCARTA installation

If all this has been accomplished successfully, the user is now ready to try running
kCARTA. Change to the KCARTA/SCRIPTs directory and type

basic.sc sondeprofile outputfile

Here sondeprofile is the name of the input radiosonde profile. This input
profile will be processed through klayers.x, producing a layer averaged profile
kcarta.op.rtp in the KCARTA/WORK subdirectory. After that, bkcarta.x runs,
reading in namelist file basic.nml (see below) and profile kcarta.op.rtp. The
output of bkcarta.x is stored in a large binary file, outputfile. This binary output
file consists of a header, which contains information that determine the overall
size of the file. After this comes the actual binary data. Since kCARTA works in
chunks of 10000 points, all the outputs for the first 10000 points are written out,
followed by the outputs for the next 10000 points and so on.

As an example to use this script, type

basic.sc BASIC/USStandardProf NEW ../WORK/out.dat

UMBC 15

DRAFT kCARTA Version 1.11,1.12,1.14

To read the contents of this file, one can use either the readkcBasic.x (Fortran)
or the readkcBasic.m (Matlab) readers. These readers go ahead and “unchunk”
the data, as shown in the figure below.

As would be evident from reading the more extensive documentation, kCARTA
works in chunks of 10000 points. For example, suppose the user wants 100 mixed
paths to be output from 605 to 705 cm−1 . These mixed paths, 1-100, in region
605-630 cm−1 are processed and output first. These are followed by the 100 mixeed
paths in region 630-655 cm−1, and so on.

However, most users would want the data in the following format. Mixed path
1, from 605 to 705 cm−1, followed by mixed path 2 in this complete wavenum-
ber interval, and so on, uptil mixed path 100. As seen from the Figure 1, the
readkcBasic.x (Fortran) and the readkcBasic.m (Matlab) readers “reshape” the
matrices that kCARTA outputs, to be in this more convenient format.

basic.sc calls readkcBasic.x and translates file ../WORK/out.dat (on the left)
to a very simple binary file ../WORK/outfile.bin (on the right of the figure). The
only possible problem is that to make this Fortan reader work fast, we have used
the nonstandard “fseek” option. This seems to work fine with SGI Fortran and
g77 on Linux, but causes grief if used with Absoft.

2.5 Checking the kCARTA installation

The format of the final binary file (shown on the right in the figure above) is very
simple :

• iSetMin : 1 integer, stating starting index (= 1)

• iSetMax : 1 integer, stating ending index (= 10000 x iNumChunks)

• iTotal : 1 integer, telling how many outputs per chunk

• Freqs : 10000 x iNumChunks, giving the kCARTA wavenumbers (reals)

• Data : (10000 x iNumChunks) x iTotal, giving the data (reals)

If 10000xiNumChunks = iX then the Freqs are output in one Fortran data
block. Similarly the Data is in iTotal rows, each of which contain iX elements.
So the whole file can be read using a simple program such as

integer iOUN,iSetMin,iSetMax,iTotal,iX,iR,iFr,iRows,iChunks

UMBC 16

DRAFT kCARTA Version 1.11,1.12,1.14

Header

Chunk 1

Chunk 2

Chunk N

Chunk 1 Chunk 2

Header

Figure 1: Translating the output file.
UMBC 17

DRAFT kCARTA Version 1.11,1.12,1.14

real raWaves(10000*iChunks),raaData(iRows,10000*iChunks)

read(IOUN) iSetMin

read(IOUN) iSetMax

read(IOUN) iTotal

iX = iSetMax - iSetMin + 1

read(IOUN) (raWaves(iFr),iFr = 1,iX)

DO iR = 1,iTotal

read(IOUN) (raaData(iR,iFr),iFr = 1,iX)

END DO

Typically, for a 100 layer atmosphere, iTotal is about 500 (five sets of mixed
paths), while iX is an integer multiple of 10000 points (eg for a typical AIRS
channel, this would probably span one or two kCARTA chunks, which would be
about 10000 or 20000 points).

3 A Walk Through a kCARTA Session

kCARTA is packaged so that it is easy to set up and start using. In order to run
the code, the user has to unzip and untar the distribution; this automatically
sets up the correct directory structure. The file README.1ST describes the steps
necessary to compile the source code for kCARTA and for the various UTILITY
files we include with the package. After this is done, a script file can be run, so
that the user can check to see if his/her setup obtains the same test results as we
supply in the COMPARISON subdirectory.

At present, the 600 Mb kCompressed Database is distributed on tape. In
the future, we plan to distribute the kCARTA package on CD in two parts; the
SVD compressed database and a zipped tar file of the source code. The user
has to put the database into the DATA/CompDataBase, DATA/WaterDataBase
subdirectories. At this point, the user can ensure that he/she has the correct
summary of the files in the database. This is achieved by a run of program
compdatabase.x, which produces a parameter file comp97.param summarizing the
database. compdatabase.f is one of the utility programs supplied along with the
kCARTA package, and is found in the UTILITY subdirectory. Typing “make”
in that subdirectory will compile the source files and place them in the binary
subdirectory BIN.

UMBC 18

DRAFT kCARTA Version 1.11,1.12,1.14

The user can now go to the source subdirectory SRC, and use the makefile
there to compile the main source code. Assuming the BLAS routines (if needed)
have also been successfully compiled and can be linked in, the code is now ready
to be run. All it requires are driver namelist input files.

We now give an overview and example of the driver namelist file; a more
detailed view will be given in subsequent sections. The example has purposely
been written so that kCARTA does a fairly comprehensive demonstration of its
abilities—radiances for downlooking and uplooking instruments, solar and thermal
background radiation alternately turned on or off, compute jacobians and so on.
(Of course, this means the output file from this run will be quite large!). All
the lines that begin with ! are comment lines, and will explain to the reader
what the different inputs are. A brief description of the purpose/effects of the
file is as follows. The first section asks kCARTA to use water continuum version
CKDv2.1, as well as to output all spectra as layer-to-space transmittances. The
frequency region is from 2705 to 2780 cm−1. We have chosen to explicitly specify
which gasIDs are to be used from the compressed database, while the program is
asked to include the required gases automatically from the crosssection database.
kCARTA is asked to read in supplied regression profile #1, which happens to be
the AFGL tropical (hot/humid) profile.

Note that in this example, we have turned on the water continuum (kCKD=21),
and so we explicitly ask kCARTA to include gases 101,102 which are the self and
foreign water continuums.

In this example the gas absorption coefficients will be weighted and combined
in two different ways, one where all gases are equally weighted by unity, the second
where water (and self and foreign continuums) and ozone weights differ slightly
from unity. We can use these weights to define three separate atmospheres, for
the program to do radiative transfer calculations. The first two atmospheres are
defined so that the high-in-the-sky instrument is downward looking (in addition
to the surface and layer emission terms, one atmosphere has both solar and back-
ground thermal turned on, while the other only has background thermal turned
on). The third atmosphere is for an upward looking instrument that is close to
the ground, with the sun filling the field of view. Jacobians will be computed and
output for all the three atmospheres.

We have now added on scattering routines and the ability to import line by line
spectra computed by an external code. In the example below, we use externally
generated spectra for some CO2 regions and for some N2O regions. In addition,
a two layer cloud is also specified.

UMBC 19

DRAFT kCARTA Version 1.11,1.12,1.14

The output section asks kCARTA to output radiances for all three atmospheres
(at different pressure levels), output all layer-to-space transmittances, and output
gas spectra for GasID=2.

Note that kCARTA will not really accept this namelist file, as it asks for Ja-
cobians to be computed, in addition to scattering computations and importing
external LBL spectra. In addition, it will complain as the output section asks for
multi level radiance outputs. If you turn off the Jacobians, as ask for radiances to
be output only at one level for each atmosphere, the namelist driver file will be
successfully parsed in.

Here is the sample namelist river file (which we name example.nml) :

$nm_params

namecomment = ’******* PARAMS section *******’

!set this to output layer to space transmittances

kLayer2Sp = 2

!set this to v2.4

kCKD = 24

!set kRTP = 0 so we read only the profile from the RTP file

kRTP = 0

$end

$nm_frqncy

namecomment = ’******* FRQNCY section *******’

rf1 = 905.000

rf2 = 1005.000

$end

$nm_molgas

namecomment = ’******* MOLGAS section *******’

!use water, carbon dioxide, ozone, nitrous oxide, methane, HCl and H2CO

! as well as the self and foreign continuums

iNGas = 9,

iaGasesNL = 1, 2, 3, 4, 6, 15, 20, 101, 102

$end

$nm_xscgas

namecomment = ’******* XSCGAS section *******’

!use all minor cross section gases

iNxsec = -1

$end

$nm_prfile

namecomment = ’******* PRFILE section *******’

iBinOrAsc = 1

iMPSetForRadRTP = 1

iRTP = 1

!this case assumes info for 2 clouds is given as slab info in caPfname

iNclouds_RTP = 2

caCloudPFname = ’dne’

UMBC 20

DRAFT kCARTA Version 1.11,1.12,1.14

!this case assumes info for 2 clouds is given as profile info in caCLoudPfname

iNclouds_RTP = 2

caCloudPFname = ’try_klayers_cloud.op.rtp’

iaCloudFile(1) = 201

iaCloudFile(2) = 202

iaCloudType(1) = 100

iaCloudType(2) = 200

raCloudDME(1) = 10.0

raCloudDME(2) = 30.0

caaCloudFile(1) = ’MIEDATA/WATER250/water_405_2905_250’

caaCloudFile(2) = ’MIEDATA/CIRRUS/cirrus_405_2905_220’

caPfname = ’testprof0.op.rtp’

$end

$nm_weight

namecomment = ’******* WEIGHT section *******’

!define 2 sets of mixed path sets

iNpmix = 3

caaMixFileLines =

!first set has all gases weighted by 1.0

’1 -1 1.0 -1’,

!second set has all gases weighted by 1.0, except water and CO2

’2 -1 1.0 4’,

’1 1.12 3 1.03 101 1.12 102 1.12’,

$end

$nm_radnce

namecomment = ’******* RADNCE section *******’

!define 3 atmospheres

iNatm = 3

!use WEIGHT set number 1 (from above, this is all gases weighted by 1.0).

!The pressure endpts are from 971 to 0.0 mb (so radiation is travelling

!upwards, to the down looking instr at 0.0 mb)

!space temp=2.96K, surface temp=308.34k,

!satel view angle=20 degrees, do not include geometry effects in angle

iaMPSetForRad(1) = 1

raPressStart(1) = 971.7370000

raPressStop(1) = 0.0

raTSpace(1) = 2.960000

raTSurf(1) = 308.3

raSatAngle(1) = 0.0000000E+00

raSatHeight(1) = 1.00

! turn off solar (-1), solar angle=0.0, use surface emiss(-1.0),

! turn on thermal diff approx, (0), thermal angle=53 degrees (-1),

!include thermal background if Jacobians are computed (1)

iakSolar(1) = -1

rakSolarAngle(1) = 0.0000000E+00

cakSolarRefl(1) = ’NONESPECIFIED’

raKSolarRefl(1) = 0.1234

iakThermal(1) = 0

rakThermalAngle(1) = -1.000000

UMBC 21

DRAFT kCARTA Version 1.11,1.12,1.14

iakThermalJacob(1) = 1

!use the following data file for spectral dependent surface emissivities

caEmissivity(1) = ’../DATA/General/emissivity.dat’

raSetEmissivity(1) = -1.000000

!use WEIGHT set number 2 (from above, this is all gases weighted by 1.0,

!except water and ozone). The pressure endpts are from 1200.0

!to 10.0 mb (so radiation is travelling upwards, to the down looking instr)

!space temp=2.96K, surface temp=303.34k,

!satel view angle=0 degrees, do not include geometry effects in angle

iaMPSetForRad(2) = 2

raPressStart(2) = 1200.0000

raPressStop(2) = 10.0

raTSpace(2) = 2.960000

raTSurf(2) = 303.34

raSatAngle(2) = 0.0000000E+00

raSatHeight(2) = -1.000000

!turn on solar (1), solar angle=0.0, use surface emiss (-1.0),

! turn on thermal accurate quadrature(1), thermal angle=53 degrees (-1 says

! use this default), include thermal background if Jacobians are computed (1)

iakSolar(2) = 1

rakSolarAngle(2) = 0.0000000E+00

cakSolarRefl(2) = ’../DATA/General/sunrefl.dat’

raKSolarRefl(2) = -1

iakThermal(2) = 1

rakThermalAngle(2) = -1.000000

iakThermalJacob(2) = 1

!use the following data file for spectral dependent surface emissivities

caEmissivity(2) = ’../DATA/General/emissivity.dat’

raSetEmissivity(2) = -1.000000

!use WEIGHT set number 1 (from above, this is 2 -1 1.0 -1, which means all

! gases weighted by 1.0). The pressure endpts are from 0.0

! to 985.0 mb (so radiation is travelling downwards, to the up looking instr)

!space temp=5600k (iakSolar = +1, sun fills FOV), dummy surface temp=303.34k,

!satel view angle=10 degrees, include geometry effects in angle

iaMPSetForRad(3) = 1

raPressStart(3) = 0.0000

raPressStop(3) = 985.0

raTSpace(3) = 2.96.0000

raTSurf(3) = 303.34

raSatAngle(3) = 10.0000000E+00

raSatHeight(3) = 705.0

! as we have upward looking instrument, just give six dummy values

iakSolar(3) = 1

rakSolarAngle(3) = 0.0000000E+00

cakSolarRefl(3) = ’dummysun’

raKSolarRefl(3) = -1

iakThermal(3) = 0

rakThermalAngle(3) = -1.000000

iakThermalJacob(3) = 1

! as we have upward looking instrument, just give a dummy emissivity

caEmissivity(3) = ’dummy’

raSetEmissivity(3) = 0.9

$end

UMBC 22

DRAFT kCARTA Version 1.11,1.12,1.14

$nm_jacobn

namecomment = ’******* JACOBN section *******’

!NOTE : THIS TELLS YOU HOW TO ENTER JACOBIAN SECTION; SINCE "SCATTER" AND

!"SPECTRA" BELOW ARE ON, THE CODE WILL NOT ALLOW YOU TO COMPUTE JACOBIANS!

!if you want to turn off NEWGASES , simply put iNumNewGases = -1 BELOW

!if you want to turn off SCATTERING, simply put kScatter = -1 BELOW

!compute two gas jacobians

iJacob = 2

!the gas IDs are 2,6 (co2 and n20)

iaJacob = 2,6

$end

$nm_spectr

namecomment = ’******* SPECTRA section ******’

!if you want to turn this off, simply put iNumNewGases = -1

!use externally generated LBL spectra for two gases

iNumNewGases = 2

!the first gas has ID = 2 (CO2), with 6 new chunks of data

iaNewGasID(1) = 2

iaNewData(1) = 6

iaaNewChunks(1,1) = 2305

iaaNewChunks(1,2) = 2330

iaaNewChunks(1,3) = 2355

iaaNewChunks(1,4) = 2380

iaaNewChunks(1,5) = 2405

iaaNewChunks(1,6) = 2430

caaaNewChunks(1,1) = ’../DATANEW/co2_2305’

caaaNewChunks(1,2) = ’../DATANEW/co2_2330’

caaaNewChunks(1,3) = ’../DATANEW/co2_2355’

caaaNewChunks(1,4) = ’../DATANEW/co2_2380’

caaaNewChunks(1,5) = ’../DATANEW/co2_2405’

caaaNewChunks(1,6) = ’../DATANEW/co2_2430’

!the second gas has ID = 4 (N20), with 2 new chunks of data

iaNewGasID(2) = 6

iaNewData(2) = 1

iaaNewChunks(2,1) = 2255

iaaNewChunks(2,1) = 2280

caaaNewChunks(2,1) = ’../DATANEW/nitrousoxide2255’

caaaNewChunks(2,1) = ’../DATANEW/nitrousoxide2280’

$end

$nm_nonlte

namecomment = ’******* NONLTE section ******’

!!!turn on nonlte

iNumNLTEGases = +1

!!use the slow accurate LBL model

iNLTE_SlowORFast = +1

iDoUpperAtmNLTE = +1

caaUpperMixRatio = ’/home/sergio/KCARTADATA/General/NLTE/atm_md.ip’

UMBC 23

DRAFT kCARTA Version 1.11,1.12,1.14

iAllLayersLTE = -1

iUseWeakBackGnd = +1

iSetBloat = +1

iaNLTEGasID(1) = 2

raNLTEstrength(1) = 1.000

raNLTEstart(1) = 30.0

iaNLTEChunks(1) = 10

!comment out this so kCARTA finds optimum profile!!!!!

!!!caaNLTETemp(1) =

!!! ’../SRC/NONLTE2/sergio/VT_48PROFILES/sergio_merge/vt5_s0.prf’

caaStrongLines(1) =

’/carrot/s1/sergio/AIRSCO2/CO2_BANDS_PARAM/co2_4um_bands.txt’

iaaNLTEChunks(1,1) = 2230

iaaNLTEChunks(1,2) = 2255

iaaNLTEChunks(1,3) = 2280

iaaNLTEChunks(1,4) = 2305

iaaNLTEChunks(1,5) = 2330

iaaNLTEChunks(1,6) = 2355

iaaNLTEChunks(1,7) = 2380

iaaNLTEChunks(1,8) = 2405

iaaNLTEChunks(1,9) = 2430

iaaNLTEChunks(1,10) = 2455

iaNLTEBands(1) = 19

!!! uses strongest sigma-sigma, pi-pi, delta-delta

!!! 2350 .. 2354 = sigma-sigma

!!! 2320 .. 2322 = pi-pi

!!! 2310 .. 2312 = delta-delta

!!! GASID GASIso iLSGQ iUSGQ run7lblID

caaaNLTEBands(1,1) =’2 1 1 9 2350’

caaaNLTEBands(1,2) =’2 2 1 9 2351’

caaaNLTEBands(1,3) =’2 3 1 9 2352’

caaaNLTEBands(1,4) =’2 4 1 9 2355’

caaaNLTEBands(1,5) =’2 1 2 16 2320’

caaaNLTEBands(1,6) =’2 2 2 16 2321’

caaaNLTEBands(1,7) =’2 1 4 24 2310’

caaaNLTEBands(1,8) =’2 2 4 24 2311’

caaaNLTEBands(1,9) =’2 1 3 23 2353’

caaaNLTEBands(1,10)=’2 1 5 25 2354’

!!!these are the ones Manuel suggested adding on; some isotopes of above

caaaNLTEBands(1,11)=’2 2 3 23 2253’

caaaNLTEBands(1,12)=’2 2 5 25 2254’

!!!these are the others Manuel suggested adding on

caaaNLTEBands(1,13)=’2 1 2 15 2110’

caaaNLTEBands(1,14)=’2 1 3 25 2120’

caaaNLTEBands(1,15)=’2 1 5 23 2140’

caaaNLTEBands(1,16)=’2 1 6 36 2160’

caaaNLTEBands(1,17)=’2 1 7 37 2170’

caaaNLTEBands(1,18)=’2 1 8 38 2180’

caaaNLTEBands(1,19)=’2 3 2 16 2322’

!!!these one never seems to exist in the NLTE profiles

caaaNLTEBands(1,20)=’2 1 3 22 2150’

UMBC 24

DRAFT kCARTA Version 1.11,1.12,1.14

caaaNLTEBands(1,21)=’2 1 4 22 2130’

$end

$nm_scattr

namecomment = ’******* SCATTR section *******’

!if you want to turn this off, simply put iNClouds = -1

!use DISORT

kWhichScatterCode = 3

!instead of doing scattering at all 10000 pts, do it at 25 points and

!then scale the results according to ‘‘k’’ of lowest layer

kDis_Pts = 25

!number of DISORT streams

kDis_Nstr = 16

!use ‘‘step over wavenumber points’’ method

kScatter = 1

!use Mie data in text file format

iScatBinaryFile = -1

!there are two clouds in the atmosphere

iNclouds = 2

!first cloud, when expanded, occupies three AIRS layers

iaCloudNumLayers(1) = 2

raExp(1) = 0.0

caaCloudName(1) = ’HappyLittleCloud’

!layer 1 is from 190 to 180 mb; IWP=5 g/m2 <dme>=50 um

raaPCloudTop(1,1) = 1.8000000E+02

raaPCloudBot(1,1) = 1.9000000E+02

raaaCloudParams(1,1,1) = 5.0

raaaCloudParams(1,1,2) = 50.0

!associate table # 1 with it; data is in file cirrus.cloud.layer1

iaaScatTable(1,1) = 1

caaaScatTable(1,1) = ’cirrus.cloud.layer1’

!layer 2 is from 220 to 190 mb; IWP=6 g/m2 <dme>=60 um

!this wil occupy more than one AIRS layer ie will be expanded

raaPCloudTop(1,2) = 1.9000000E+02

raaPCloudBot(1,2) = 2.2000000E+02

raaaCloudParams(1,2,1) = 6.0

raaaCloudParams(1,2,2) = 70.0

!associate table # 2 with it; data is in file cirrus.cloud.layer2

iaaScatTable(1,2) = 2

caaaScatTable(1,2) = ’cirrus.cloud.layer2’

!this cloud will be used in the rad transfer for TWO atmospheres defined

!in RADNCE above : atmospheres numbers 1 and 2

iaCloudNumAtm = 2

iaaCloudWhichAtm(1,1) = 1

iaaCloudWhichAtm(1,2) = 2

!!!aerosol at boundary layer

UMBC 25

DRAFT kCARTA Version 1.11,1.12,1.14

iaCloudNumLayers(2) = 1

raExp(2) = +3.0

caaCloudName(2)=’happy little boundary layer aerosol’

!cloud is from 970 to 960 mb, and so will be expanded

!also, as raExp(2) = +3, the IWP in the layers will be exponentially scaled

raaPCloudTop(2,1) = 970.0

raaPCloudTop(2,1) = 860.0

raaPCloudBot(2,1) = 970.0

raaaCloudParams(2,1,1) = 2.5e-1

raaaCloudParams(2,1,2) = 0.2e+0

iaaScatTable(2,1)=2

caaaScatTable(2,1)=’aerosol.layer’

iaCloudNumAtm(2)=1

iaaCloudWhichAtm(2,1)=1

$end

$nm_output

namecomment = ’******* OUTPUT section *******’

caComment = ’output for sample file in documentation’

!notice how we first define paths to be output, then MPs, then radiances

!for GAS ID=2, output gas path spectra at all layers. Thus the kProfLayer

!paths of carbon dioxide (gasID=2) will be output

iaPrinter(1) = 1

iaAtmPr(1) = 2

iaNp(1) = -1

!output all mixed path spectra. Thus from *WEIGHT, there are 300

!mixed paths that will be output

iaPrinter(2) = 2

iaAtmPr(2) = -1

iaNp(2) = -1

!for first atm, output radiance at TOA

iaPrinter(3) = 3

iaAtmPr(3) = 1

iaNp(3) = 1

raaOp(3,1) = 0.0

!NOTE THAT SINCE WE HAVE TURNED ON SCATTERING CODE, WE CAN ONLY OUTPUT

!RADIANCES AT ONE LEVEL. IF WE WANT TO OUTPUT RADIANCES AT MANY LEVELS, THEN

!WE CANNOT HAVE SCATTERING

!TO TURN OFF SCATTERING, SET kScatter = -1 ABOVE

! output two radiances for the second atmosphere, at pressures 10 and 20 mb.

! because of the atmosphere definition, these are at the satellite posn, and

! slightly below the satellite position, respectively

iaPrinter(4) = 3

iaAtmPr(4) = 2

iaNp(4) = 1

raaOp(4,1) = 10.0

! output four radiances for the third atmosphere, at pressures

! 960.0 mb, 970.0 mb, 980 mb and 985.0 mb

UMBC 26

DRAFT kCARTA Version 1.11,1.12,1.14

! because of the atmosphere definition, the first three are on top of the

! satellite, while the fourth is at the satellite.

iaPrinter(5) = 3

iaAtmPr(5) = 3

iaNp(5) = 4

raaOp(5,1) = 960.0

raaOp(5,2) = 970.0

raaOp(5,3) = 980.0

raaOp(5,4) = 985.0

$end

$nm_endinp

namecomment = ’******* ENDINP section *******’

$end

To run the program, the user should type “ kcarta.x example.nml out.dat
outjacob.dat” Assuming that the driver file “example.nml” is in the same directory
as “kcarta.x,” this will make kcarta.x to read in the driver file, and then output
the radiances/transmittances to be output to “out.dat” and the jacobians to be
stored in “outjacob.dat.” A simple flow diagram that pulls together the different
files required to run kCARTA, is shown below.

Our supplied programs readkcarta.x (a FORTRAN reader) and readkcstd.m (a
MATLAB reader) can now be used to read the data produced by kCARTA. The
FORTRAN reader can be used to read in the header and all the data, and save to
a simpler binary file that only contains the data. Or the FORTRAN reader can
be used to save one of the paths/mixed paths/radiances to a two column text
file, that can easily be read in graphics packages. Using this option, Figure 3
shows the radiance computed from the first print option (i.e. the radiance at the
top of atmosphere number 1). Here we have combined the results of three runs,
one with no scattering, and the next two with DISORT and RTSPEC used for an
atmosphere where there is aerosol near the ground, and a cirrus cloud at 11 km.

4 New Spectroscopy used by kCARTA

Most of the compressed optical path database that is used by kCARTA, is gener-
ated by our own custom line-by-line code. This code is based on GENLN2. The
main differences between our code and GENLN2 are

• GENLN2 divides the lines into “near” and “far” bins, while our code also
uses a “medium” bin

UMBC 27

DRAFT kCARTA Version 1.11,1.12,1.14

kLAYERS
(point to layer profile)

Point
profile

DRIVER NAMELIST FILE

This file defines the wavenumber region, name of profile
and sets the atmosphere clear sky properties, and/or clouds.
Also defines the output required.

kCARTA

Output

kCARTA database

Emissivity files

Mie scattering files

Figure 2: Files needed to run kCARTA.

UMBC 28

DRAFT kCARTA Version 1.11,1.12,1.14

900 920 940 960 980 1000 1020
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Wavenumber cm−1

R
ad

ia
nc

e
in

 W
m

−
2

sr
−

1/
cm

−
1

kCARTA Spectrum for DownLook Instrument

Clear Sky
DISORT
RTSPEC

Figure 3: Sample output radiance spectrum.
UMBC 29

DRAFT kCARTA Version 1.11,1.12,1.14

• Our code uses Q branch line mixing, as well as P and R branch line mixing
for the 4 and 15 micron CO2 optical depths

Some other features of the spectroscopy used by kCARTA also include our mod-
ifications to the water-self and -foreign continuums in the 1600 cm−1 bandhead.
CKDv2.4 currently underestimates the continuum contribution in this region.

The spectroscopy used by kCARTA has been validated by comparing to data
from campaigns such as CAMEX-1, WINTEX, ARIES and CLAMS. This variety
means a number of different instruments, in differing atmospheric situations, all
seem to imply that kCARTA is generally correct. In addition, we are now using
data from the AIRS instrument, which is further helping us refine some of our
spectroscopy. For example, we had previously noted that while the linemxing in
the 15 micron region gave us very acceptable obs-calcs, there had always been
a little trouble in the 4 micron bandhead. The AIRS data is helping us further
refine our model, and we hope to come out with some updated corrections to the
database very soon.

5 Units and Definitions

While reading this section, the user is reminded that kCARTA uses the 100 AIRS
layers, spline interpolated onto MYNLAY layers. All angles set in the kCARTA files
should be in degrees. Frequencies are in units of wavenumbers (cm−1). In defining
the atmospheres inside the nm radnce section, pressure boundaries should be in
millibars (1.0 atm=1013.25 mb). Surface and deep space temperatures are in
Kelvin. If the user specifies pressures at which radiances are to be output, they
should also be in millibars.

The gas profiles expected by kCARTA use the following units. The gas amounts
are path averaged over the layers, and are in units of kiloMolescm−2. Tempera-
tures should be specified in kelvin, while pressures and partial pressures should be
expressed in atmospheres. Layer altitude (approximately at center of the layer)
should be in kilometers. Each gas will have a kProfLayer layer profile. Note that
if the user inputs a point profile in the appropriate format to our supplied kLayers
program, the path averaged profile that is output by this program will be in the
correct units.

Output gas and mixed path optical depths are dimensionless (absorption co-
efficient × gas amount); obviously so are transmittances. Output radiances are in
blackbody radiance units (milliwatts m−2sr−1/cm−1). Jacobians can be output

UMBC 30

DRAFT kCARTA Version 1.11,1.12,1.14

in one of three modes : an example is d(rad)/dsm, where sm is the temperature
or gas amount in layer m. Fluxes are output in one of two modes : radiance *
angle units, or Kday−1/cm−1

(note the smaller, second Jacobian file only dumps out radiances assuming the
atmosphere was perturbed using a stemp/gas column perturbations).

The following terms will be found in various places throughout the document.

Table 1: Glossary of terms used in document

compressed coefficients kCARTA uses a compressed database to
quickly determine the absorption coefficients
of most gases in the HITRAN database, for
the required profile

xsec database Some of the gases in the HITRAN database
(notably the CFCs) are too complex to have
their parameters determined experimentally.
The absorption coefficients for these gases
are computed by interpolating the measured
coefficients at various temperatures and pres-
sures

kMaxLayer this is the number of AIRS layers that
were used in producing the kCompressed
Database (=100)

kProfLayer our kLayers code allows the user to subdi-
vide the lower AIRS layers or clump together
the upper AIRS levels. This means the re-
sulting number of layers could be lesser or
greater than kMaxLayer, depending on how
klayers.x is set up. This will be the actual
maximum number of layers in each atmo-
sphere for the particular kCARTA run

UMBC 31

DRAFT kCARTA Version 1.11,1.12,1.14

nm params some required parameters have default val-
ues. The user can change these values to
other allowed values. Note these settings ap-
ply to the entire run. For example, if the
user chooses to use water continuum version
CKDv2.1, this will be used for all the mixed
paths and atmospheres in the run.

nm molgas required section in kCARTA driver namelist
file. This specifies which gases need to have
their optical depths computed using the com-
pressed database

nm xscgas optional section in kCARTA driver namelist
file. This specifies which gases need to
have their optical depths computed using the
cross-sectional database (xsec)

path the optical depth for a gas, in a particu-
lar layer. Each gas will have kProfLayer
paths associated with it. If there are iN-
Gas gases specified in nm molgas, and iXsec
gases specified in nm xscgas, there will be a
total of kProfLayer(iNgas+iNXsec) paths

nm prfile required section in kCARTA driver namelist
file. This specifies which gas profile to use
in the run. The profile would be in the
kLAY ERS output format. Each layer for
each gas in this profile will constitute a gas
path.

nm weight required section in kCARTA driver namelist
file. This specifies the gas weightings (one
weight per gas). This is a multiplier to the
gas profile, applied equally to the gas in ALL
kProflayers.

UMBC 32

DRAFT kCARTA Version 1.11,1.12,1.14

mixed path When the paths for one gas are computed,
as determined by the gas profile, the user
can then combine different weights of this
gas, with the optical depths of other appro-
priately weighted gases. In this way, the
user can build up an atmosphere that con-
sists of the gases specified in nm molgas and
nm xscgas, weighted appropriately. As the
paths are in sets of kProfLayers, so the
mixed paths are also in sets of kProfLayers

mixing table is a term used to describe how the weight-
ings of various gases (from nm weight) are
added together cumulatively to obtain a set
of mixed paths

atmosphere Once the individual gas absorption coeffi-
cients have been combined to form sets of
mixed paths (kProfLayers mixed paths per
set), an atmosphere can be defined from any
one of the sets. In addition, the boundary
conditions of the atmosphere (start and stop
pressures, surface temperature and emissiv-
ity) and the direction of radiation travel de-
fine individual atmospheres.

nm radnce optional section in kCARTA driver namelist
file. Once the user has combined individual
gas paths to form mixed paths, he/she can
now define an atmosphere, as above. The ra-
diance measured by an instrument anywhere
within the boundaries of the atmosphere, can
be calculated. The boundary conditions (eg
surface temperature, upper and lower pres-
sure boundaries) and direction of radiation
travel are amongst other parameters the user
specifies here

UMBC 33

DRAFT kCARTA Version 1.11,1.12,1.14

nm jacobn optional section in kCARTA driver namelist
file. Once the user has defined an atmo-
sphere, the sensitivity of the measured radi-
ance to gas amounts and temperatures of the
different layers can be studied by computing
the Jacobians and weighting functions. Note
these sensitivities are for clear skies only. At
present, the code does allow the user to com-
pute radiances using the PCLASM scatter-
ing models, and then compute jacobians. In
addition, since the code computes tempera-
ture jacobians while it is uncompressing the
kCompressed Database, it cannot compute
these jacobians if the spectra for some gases
in a wavenumber interval are externally sup-
plied.

nm scattr optional section in kCARTA driver namelist
file. Once the user has defined an atmo-
sphere, by default, radiance computations
will assume a clear sky. However, the user
can choose to include various clouds in each
atmosphere, and use our interface to the scat-
tering codes such as rtspec.f , disort.f or
twostream.f or pclsam.f . If scattering is
turned on, then jacobians will be be com-
puted using the pclsam algorithm.

nm nonlte optional section in kCARTA driver namelist
file. Once the user has defined an atmo-
sphere, by default, radiance computations
will assume a clear sky in LTE. However, the
user can choose to include NONLTE compu-
tations for some of the upper layers of the
AIRS atmosphere. Since this entails doing
laborious line by line computations, the code
slows down tremendously!

UMBC 34

DRAFT kCARTA Version 1.11,1.12,1.14

nm spectr This section allows the user to choose more
than one gas, and have kCARTA read in
LBL spectra produced by some other code
for defined spectral regions. These regions
have to overlap the kCARTA chunks eg 705-
730, 1255-1280 etc If this option is used, then
nm jacobn cannot be used!! Also, the code
will simply read in the spectra, and weight
it appropriately ... it will not do checks . In
other words, it is the users responsibility to
make sure the spectra read in were computed
with the correct layer amounts and temper-
atures.

nm output required section in kCARTA driver namelist
file. The user can choose to output path or
mixed path spectra, or radiances

nm endinp required section in kCARTA driver namelist
file. Specifies end of driver namelist file

driver namelist file this namelist file contains settings that are
read in by kCARTA and then control the run-
ning of the code (namely, what output to pro-
duce)

iNatm number of atmospheres defined in driver
namelist input file

5.1 Note about computed fluxes

Here our definition of flux is integration of the upward radiance over incident an-
gles minus integration of downward radiance over incident angles, at each bound-
ary pressure level in the atmosphere. The difference between the upward and
downward “fluxes” then give us the net heating of the layer, which is directly
related to the temperature change per unit time. Refer to Liou, “An Introduc-
tion to Atmospheric Radiation”, pg 107. If the atmosphere is defined between
layers 3 and 65, then the flux differences (at 0.0025 cmresolution) between the
top and bottom of each of layers 3-65 is output. In other words, the code does
not sum over all the radiances across the infrared spectrum, but just outputs the

UMBC 35

DRAFT kCARTA Version 1.11,1.12,1.14

monochromatic “flux”. The user will read in this flux, and “add all the points,
multiplied by 0.0025.”

If the user supplies a name filename for the usual radiance results to be
output, then the flux results (kFlux = 1,2) are in filename FLUX (or if kFLux
= 3,4,5 filename OLR); otherwise they will stored in flux.dat. Note only if
kFlux=1,2,3,4,5 and a radiance for an atmosphere is to be output, then the fluxes
will be computed. This is independent of whether or not Jacobians are to be
computed.

If kFlux=1, the fluxes are simply an integral of radiance over 2πµdµ, which
means the units will be radiance units × steradians, or mW m-2/cm-1.

If kFlux=2, the fluxes are an integral of radiance over 2πµdµ, and then divided
by −cp ρδz where cp is the specific heat at constant pressure, ρ is the density and
δz is the layer thickness. This means the units will be Kelvin per day percm−1.

To get the same type of plots that are in Liou, “An Introduction to Atmo-
spheric Radiation”, pg 108, the user first has to read in the computed “fluxes”;
then for each layer, sum across the monochromatic “fluxes”, multiply the result by
0.0025 cm−1 (as this is the same as integrating I(ν)dν) to get the correct flux units
(the factor of 86400 has already been accounted for, so the units are “correct.”).

If kFlux=3, only outgoing radiation at the top of each layer is computed; so
the units are the same as for kFlux=1 case, namely mW m-2 per wavenumber
point.

If the user is only interested in OLR at the top of the atmosphere, then
kFlux=4 only outputs upgoing flux at TOA (thus making the binary output files
approximately 100 times smaller than fluxes output at all layers).

If the user is only interested in OLR at TOA, tropopause and the ILR at
GND, then kFlux=5 only outputs downgoing flux at GND and upgoing flux at
tropopause and TOA (thus making the binary output files approximately 33 times
smaller than fluxes output at all layers). This way the user can compute the
greenhouse forcing parameter(s) [?, ?]

g =
σT 4

surf −OLRclearsky

σT 4
surf

G =
σT 4

surf

OLRclearsky

For kFlux = 3,4,5 don’t forget to multiply by d(nu) = 0.0025 cm-1 when doing
the (Matlab) integral over frequency (and divide the result by 1000 to change from
mW to W if kFlux = 1,3,4,5)

UMBC 36

DRAFT kCARTA Version 1.11,1.12,1.14

A sample flux plot is shown below, in Figure 4

6 Using KLAYERS : change point profile to layer

averaged profile

See the KLAYERS documentation. It is supplied to default to the AIRS 100
layers but the user can rest the pressure levels as necessary.

6.1 Compiling kcarta

Once the user has successfully run klayers.x as described above, he/she should
now go to the kCARTA/SRC directory.

The user now has to edit kcarta.param, and set kProfLayer to the same number
of layers that klayers.x can produce. Having done this, kCARTA is ready to be
compiled (type “make”) and then run.

7 Using RTSPEC : producing the Mie Scatter-

ing tables

If the user only wants to compute clear sky radiances, then this section can be
skipped. However, this section must be read by someone interested in using
kCARTA for scattering computations.

To do scattering computations, kCARTA has been interfaced with two exten-
sively tested scattering routines : RTSPEC and DISORT . While RTSPEC 1 is
very fast, it cannot be used when one has a beam source present (eg a solar beam).
DISORT 2 can handle this case; however it is much slower than RTSPEC. We
have written our own TWOSTREAM code that is fast and allows the user to
use a solar beam. In addition we now have an interface to PCLSAM which also

1M. N. Deeter and K. F. Evans, “A Hybrid Eddington Single Scattering Radiative Transfer
Model for Computing Radiances from Thermally Emitting Atmospheres,” JSQRT 60 635-648
(1998)

2K. Stamnes, S-C. Tsay, W. Wiscombe and K. Jayaweera, “Numerically Stable Algorithm for
discrete ordinate method Radiative Transfer in multiple scattering and emitting layered media,”
Appl. Opt 27, No 12, 2502 (1988)

UMBC 37

DRAFT kCARTA Version 1.11,1.12,1.14

−10 −8 −6 −4 −2 0

10
0

10
1

Cooling Rates in Clear US Standard Profile

K/day

A
lti

tu
de

 (
km

)

CO2 15um
O3 9.6um

Figure 4: Sample flux computation.
UMBC 38

DRAFT kCARTA Version 1.11,1.12,1.14

allows the use of solar beam, and is very fast. Jacobians and fluxes can easily be
computed with this algorithm.

To combine the advantages of both of these well documented and tested scat-
tering codes, kCARTA has been interfaced to both these codes so that the same
information is needed for either scattering routine. As RTSPEC needs some
more specific information, we have chosen to include the scaled Mie properties
computed by the sister code to rtspec.f , sscatmie.f . Given some general in-
puts, this code will compute extinction coefficients, single scattering albedos and
asymmetry parameters that can be used by both codes, for ice or water clouds.

In addition, we have extended the capability of sscatmie.f by interfacing the
aerosol package OPAC 3 to it. The addition of this database extends the ca-
pabilities of sscatmie.f to compute the same parameters for a variety of aerosol
modes, at varying relative humidity values.

The original source code and documentation for some of the packages is easily
obtained over the Internet :

RTSPEC : http://nit.colorado.edu/~evans/rtspec.html

DISORT : ftp://climate.gsfc.nasa.gov/pub/wiscombe/Multiple_Scatt/DISORT2.0beta/

OPAC : http://www.lrz-muenchen.de/~uh234an/www/radaer/opac.html

To produce the Mie scattering tables, go to the ../SCATTERCODE/RTSPEC
directory. Type “make” at the prompt to compile the code (at present the code
has been tested on SGI Ultrix and Absoft F77 Linux). This should produce 5
executables :

• combine : this allows the user to “combine” a number of text output Mie
files, into one single binary file

• translate : this allows the user to “translate” a text output Mie file, into a
smaller binary file

• rtspec : the compiled “rtspec” code

• SSCATMIE : this is the executable the user will use to generate Mie scat-
tering tables of ice, water clouds or aerosols

3M. Hess, P. Koepke and I. Schult, “Optical Properties of Aerosols and Clouds : The Software
Package OPAC,” Bull. Am. Met. Soc, 79, No 5, 831 (1998)

UMBC 39

DRAFT kCARTA Version 1.11,1.12,1.14

• refind : the user can use this to compute refractive indices of ice, water
clouds or aerosols

The particle distribution assumed by sscatmie is a modified gamma distribu-
tion, where the user can vary parameter α (typically = 6):

n(r) = γrαexp−br

The peak of the distribution is at x = α/b. Both b and r are in microns. The
normalization term γ is related to the liquid water content ρlwc by

ρlwc(gm−3) =
∫

(4/3)πr3ρwatern(r)dr = γ
4π

3
ρwater

Γ(α + 4)

bα+4

while the average or effective radius of the distribution is given by

ravg =

∫
n(r)r3dr∫
n(r)r2dr

=
α + 3

b
= Dme

Depending on the grid of particle sizes chosen (see Enter min and max Dme, and
number of sizes below), this are the values at which sscatmie reports results.

As sscatmie runs, it prompts the user to answer the follwoing questions :

Enter filename for output table

Fixed wavenos or evenly-spaced wavenos (F or E):

Enter min, max and number of wavenumbers (cm^-1)

Enter min and max Dme, and number of sizes

Enter alpha for particle distribution

Enter species (’I’=ice, ’W’=water, ’A’=aerosol):

If aerosol,

Enter aerosol type and Relative Humidity

0 : General NH4SO4, from Remote Sensing of Atm by G. Stephens

1 : OPAC INSO : insoluble aerosol

2 : OPAC WASO : water-soluble aerosol

3 : OPAC SOOT : soot

4 : OPAC SSAM : sea salt (accr mode)

5 : OPAC SSCM : sea salt (coag mode)

6 : OPAC MINM : mineral salt (nucleated mode)

7 : OPAC MIAM : mineral salt (accr mmode)

8 : OPAC MICM : mineral salt (coag mode)

UMBC 40

DRAFT kCARTA Version 1.11,1.12,1.14

9 : OPAC MITR : mineral transported (desert dust)

10 : OPAC SUSO : sulphate droplets

Enter cloud temperature (Kelvin)

If ice or aerosol

Enter Volume fraction factor (a) and exponent (b) (vf=a*D^b, D in um)

Enter E for evenly-spaced mu or Q for Lobatto-Quadrature mu

Enter min and max mu, and number of angles

Delta scale the scattering properties (Y, N, H, or G)

Typical answers for an atmosphere with sulphate droplets aerosol, are

/CLOUDS/aerosol.scatab805 !output file name

’E’ !evenly spaced wavnos

805.0 1005.0 50 !start,stop waveno

0.1 100 10 !particle sizes

6 !alpha parameter, for the particle size distr

’A’ !aerosol

10 30.0 !sulphates (OPAC file 10), at 30%RH

230.0 !cloud temp (irrelevant)

1.0 0.0 !volume fraction and exponent

’E’ !evenly spaced mu (cos(x)) for quadrature

0.1 1.0 10 !min(mu),max(mu) ... used by RTSPEC

’G’ !delta scale to make things more accurate

Typical answers for a cirrus cloud in the troposphere (11 km), are

/CLOUDS/ice.scatab805 !output file name

’E’ !evenly spaced wavnos

805.0 1005.0 50 !start,stop waveno

0.1 100 10 !particle sizes

6 !alpha parameter, for the particle size distr

’I’ !aerosol

230.0 !cloud temp (irrelevant)

1.0 0.0 !volume fraction and exponent

’E’ !evenly spaced mu (cos(x)) for quadrature

0.1 1.0 10 !min(mu),max(mu) ... used by RTSPEC

’G’ !delta scale to make things more accurate

The files produced by running the code can now be used by kCARTA

UMBC 41

DRAFT kCARTA Version 1.11,1.12,1.14

8 kCARTA source files

This section gives a brief description of the different files containing the source
code for kCARTA.

• this set of continuum and cross section files will eventually be phased out,
as we are moving towards using a kCompressed style format for the cross
section gases, and a lookup table format for the CKD computations.

• calcon*.f : compute the water continuum (CKD v0,1,2,2.3,2.4 etc)

• calq.f : auxiliary file to compute cross-section absorption coefficients (gas
IDs 51-63)

• calxsc.f : file to compute cross-section absorption coefficients (gas IDs 51-63)

• freqfile.f : kCARTA start/stop chunks, other misc stuff eg database freq
checks for given gas/chunk combos and so on

• rtp interface.f : interface with RTP libraries

• spline and sort.f : lots of functions; sorting, splines, mod, div,real2double etc

• h2oft0.f : water continuum data blocks, GENLN2 (lorentz) style

• h2ost0.f : water continuum data blocks, GENLN2 (lorentz) style

• h2ost1.f : water continuum data blocks, GENLN2 (lorentz) style

• h2oft0 wb.f : water continuum data blocks, correct (local) style

• h2ost0 wb.f : water continuum data blocks, correct (local) style

• h2ost1 wb.f : water continuum data blocks, correct (local) style

• rad main.f : clear sky radiance calculations

• rad diff.f : compute thermal background using diffusivity approx

• rad quad.f : compute thermal background using quadrature

• rad misc.f : solar and other misc radiance code

UMBC 42

DRAFT kCARTA Version 1.11,1.12,1.14

• rad flux.f : clear sky flux code

• scatter rtspec main.f : interface to RTSPEC calculations

• scatter rtspec code.f : RTSPEC scattering code (from Frank Evans)

• scatter rtspec flux.f : flux code (totally incomplete!!!!)

• scatter pclsam main.f : interface to PCLSAM calculations

• scatter pclsam code.f : PCLSAM scattering code

• scatter pclsam flux.f : flux code

• scatter disort main.f : interface to DISORT calculations

• scatter disort code.f : DISORT scattering code (from K. Stamnes)

• scatter disort misc.f : couple of DISORT specific routines

• scatter disort flux.f : flux code (totally incomplete!!!!)

• scatter twostream main.f : interface to TWOSTREAM calculations

• scatter twostream code.f : twostream scattering code

• scatter twostream guts.f : twostream scattering code (contd)

• scatter twostream flux.f : flux code

• jac main.f : main jacobian code

• jac up.f : jacobian code for up looking instrument

• jac down.f : jacobian code for down looking instrument

• kcartamain.f : main kCARTA source file

• kcartamisc.f : misc routines eg splines

• kcoeffMAIN.f : set up calls to compute LTE absorption coefficients

• kcont xsec.f : set up calls to compute continuum, xsec

UMBC 43

DRAFT kCARTA Version 1.11,1.12,1.14

• kcoeffSPL.f : compute LTE absorption coefficients

• kcoeffSPLJAC.f : compute LTE absorption coefficients, do Jacobians

• knonlte.f : set up calls to compute NLTE absorption coefficients

• klineshapes.f : computes qfncs, lte line strengths etc for NLTE absorption
coefficients; optimized for 4 um CO2 region, and also reads in HITRAN
parameters

• kreadVTprofs.f : reads/writes GENLN2 styles vib temp files

• kpredictVT.f : tries to predict NLTE profs and writes out GENLN2 style vib
temp files

• kvoigt cousin.f : computes voigt and cousin lineshapes

• kcousin.f : computes co2 continuum and cousin lineshapes

• n main.f : main input file parsing routines

• n gas spectra.f : MOLGAS,XSCGAS,SPECTRA,NLTE parsing routines

• n pth mix.f : PTHFIL,MIXING parsing routines

• n rad jac scat.f : RADFIL,JACOBN, SCATTER parsing routines

• n output.f : OUTPUT parsing routines

• s writefile.f : output writing routines

• s misc.f : misc parsing routines and readers

9 Required data files

kCARTA requires a number of data files to be present at compile time, and another
set to be present at run time. At compile time, the required files contain definitions
for the array sizes, as well as the paths to the database and required files.

At run time, the various required files drive the run-time session of the pro-
gram, tell it which compressed data files exist for which gas, in different wavenum-
ber regions, and so on. Thus, some of these files will have to be regenerated by

UMBC 44

DRAFT kCARTA Version 1.11,1.12,1.14

the user each time he/she updates the compressed database. In particular, the
program compdatabase.f, in subdirectory UTILITY (along with the script comp.sc
that exists in subdirectory SCRIPTS) should be run each time the user updates the
files that exist in the compressed database. A summary of the existing database
files then exists in comp97.param.

The following parameter files need to be present at compile time, in the same
subdirectory as the source code.

Table 2: Compile time parameter files.

kcarta.param compile time file that allows the user to define
the paths to compressed database, reference pro-
files etc In addition, the user can define the size
of matrices, arrays and so on here

gauss.param contains Gauss-Legendre wieghts for angular in-
tegrations

scatter.param contains interface array dimensions kCARTA to
scatter code

pre defined.param contains many interface array dimensions for
kCARTA; DO NOT TOUCH!!!!

post defined.param contains many interface array dimensions for
kCARTA; DO NOT TOUCH!!!!

The following data files need to be present at run time, in the relevant subdi-
rectory specified in kcarta.param. (If no cross-section gases are to be used, then
xsec.param is not necessary)

Table 3: Run time data files.

comp97.param contains a summary of the compressed database,
so the program knows which gas absorption co-
efficients can be uncompressed for a particular
frequency range

UMBC 45

DRAFT kCARTA Version 1.11,1.12,1.14

xsec.param contains a summary of the crosssection
database, so the program knows which CFC
absorption coefficients can be included for a
particular frequency range. Note that currently
there is a switch between using the H92 cross
section database, or using the H98 kCompressed
files for these gases; this will be phased out
eventually.

Of the following data files, only the driver namelist input file and the profile
need to be present at run time, in the relevant subdirectory chosen by the user.
Depending on the set of instructions found in the driver namelist file, the last two
files may or may not be needed.

Table 4: Other data files.

driver namelist file contains user specified Gas ID’s, frequency
range gas weights, atmosphere definitions, out-
put styles, etc. This is the main file that drives
the running of kCARTA

gas profile contains the path profile information (gas
amounts, pressures, partial pressures, tempera-
tures and so on. kProfLayers layers are required
for each gas. User can opt to use a shorter
version (water and ozone amount/temperature
profiles), or just use read in a regression profile.
NOTE the gas profile can either be in the old
KLAYERS format, which is a text file, or in the
new RTP format

continuum we are using our own set of lookup tables for the
water continuum. These tables are based on the
CKDv0,21,23,24 tables, as well as CKD 51,55
which are our own modifications

emissivity if radiances are to be computed, the user can
vary the surface emissivity as a function of
wavenumber. NOTE If a RTP file is used to
read in atmospheric info as well, this file will
also include the emissivity and solar reflectivity

UMBC 46

DRAFT kCARTA Version 1.11,1.12,1.14

xsecdata if the absorption coefficients of the CFC’s are
to be included, and the user wants to use the
old H92 cross sections data, the file containing
this info must be present. the user needs to set
kXsecFormat = -1 in the kcarta.param file We
supply file xsecdata.dat in DATA/General. Note
that this requirement has been phased out, as
the user can use a kCompressed style format for
the cross section gases, by setting kXsecFormat
= +1 in the kcarta.param file

A partial listing of the parameter file comp97.param is

Table 5: Parameter file listing.

1 605.000000 2830.000000 2
2 605.000000 1105.000000 2
2 1205.000000 1405.000000 2
2 1830.000000 2555.000000 2
2 2580.000000 2655.000000 2
2 2730.000000 2780.000000 2
3 605.000000 880.000000 2

where the first column denotes the (HITRAN) GasID, and the second/third columns
the start/stop frequencies of the compressed database coverage of that gas. The
fourth column indicates these files are of type “2” which all have a wavenumber
spacing of 0.0025 cm−1. The only gases/frequency combinations stored in the
database are those that have appreciable cross sections for an Earth atmosphere.

When the program starts to run, it checks to ensure that the parameters
set in kcarta.param, pre defined.param, post defined.param make sense. It then
parses in the driver namelist file, and if necessary the gas profile. After this, the
program starts running in earnest, making use of files comp97.param, xsec.param
and xsec.data when necessary.

UMBC 47

DRAFT kCARTA Version 1.11,1.12,1.14

10 kCARTA BANDS

kCARTA was originally developed for modelling IR instruments such as AIRS,
IASI and CRiS. This means the original compressed database was only required
to span 605 - 2830 cm−1. The paths kWaterPath,kCompPath,kCKDPath tell
kCARTA where to look for the compressed files for this wavelength span. The files
are identified by having an “r” prefix, and the point spacing is 0.0025 cm−1.

kCARTA now has databases (UNVALIDATED!!!) that span either end of this
original region. Currently (as of 01/29/2010) the span is from 80 cm−1 (FIR)
to 25000 cm−1 (UV). The point spacing changes from band to band, going from
0.00025 cm−1 at the large wavelength (low freq) to 0.05 cm−1 at the small wave-
length (high freq) end. The bands, with the prefixes, are as follows :

v = 12000-25000 cm-1, at 0.05000 cm-1 spacing (= 500 cm-1 chunk span)

o = 8250-12250 cm-1, at 0.02500 cm-1 spacing (= 250 cm-1 chunk span)

n = 5550-8350 cm-1, at 0.01500 cm-1 spacing (= 150 cm-1 chunk span)

m = 3550-5700 cm-1, at 0.01000 cm-1 spacing (= 100 cm-1 chunk span)

s = 2830-3580 cm-1, at 0.00250 cm-1 spacing (= 025 cm-1 chunk span)

*** r = 605-2830 cm-1, at 0.00250 cm-1 spacing (= 025 cm-1 chunk span)

q = 500- 605 cm-1, at 0.00150 cm-1 spacing (= 015 cm-1 chunk span)

p = 300- 510 cm-1, at 0.00100 cm-1 spacing (= 010 cm-1 chunk span)

k = 140- 310 cm-1, at 0.00050 cm-1 spacing (= 005 cm-1 chunk span)

j = 080- 150 cm-1, at 0.00025 cm-1 spacing (= 2.5 cm-1 chunk span)

This means the paths to the databases need to be specified at compile time.
For example kWaterPathj,kCompPathj,kCKDPathj need to be set to tell the code
where to find the FIR database for 80-150 cm−1.

It is best to divide kCARTA into runtime chunks. So for example if the user
wishes to get spectra between 605-3330 cm−1, do two separate runs, one from 605-
2830cm−1 and the other between 2830-3330 cm−1. This is because the resolution
of the spectra changes as you move from band to band.

The default radiative transfer in the NIR/VIS/UV is clear sky .. not even
accounting for Rayleigh. So beware! Also, in the UV the xsec databases (from
HITRAN) for O3 mysteriously ended at around 40800 cm−1, and so ozone ab-
sorption from the tail end of the band is missing. Bad, bad, bad!!!

UMBC 48

DRAFT kCARTA Version 1.11,1.12,1.14

11 Water isotopes

The HDO isotope is highly variable spatially. This is seen most clearly in the
SW band of IASI (2600-2800 cm−1). kCARTA defines a region bounded by [kWa-
terIsoBandStart,kWaterIsoBandStop] [2405,3330] cm−1. This encompasses the
“r” band (2405-2830 cm−1) and the “s” band (2830 - 3530 cm−1) regions of the
database. Water is seprated into gasIDs 1,103 where 1 is almost the usual HI-
TRAN gasID for water, and 103 signifies heavy water (seprated or “broken out”
on;y within the above mentioned region).

To model water, kCARTA uses
I) gasID = 1 = water with ALL isotopes (HITRAN nomenclature 1,2,3,4,5,6)
OUTSIDE this band region and
II) gasID = 103 = water for HDO (HITRAN nomenclature = 4)
gasID = 1 = water with ALL OTHER isotopes (HITRAN nomenclature 1,2,3,4,6)
INSIDE this region.

Outside this region, when “water” is uncompressed, it contains all the isotopes
in compressed file b1 wxyz.dat. Within this region, it uncompresses HDO as gasID
= 103 and H2O(isotopes 1,2,3,4,6) as gasID = 1

To complete the optical depth due to water, the self and foreign (gasIDs
101,102) continuums must be added in as well. The CKD model needs to be
chosen for this.

12 Compile time file kcarta.param

Before compiling the code, the user has to tell kCARTA what size arrays and
matrices are to be declared, as well as the paths to required files, such as those
in the compressed database and the reference and regression profiles. This is
done by setting various parameters in file kcarta.param, which is divided into 2
sections. The first section has the set of user defined parameters. How to set up
this section of the file has to be thoroughly understood, as the parameters set in
the kcarta.param file determine where the programs searches for the compressed
database, as well as allocating memory. Any errors here will likely cause the
program to stop execution. The second section of the file contains other definitions
and parameters and should NOT BE TOUCHED (if they are, insert usual hazard
messages, use at own risk, etc., here).

Table 6 gives the list of user definable parameters for this file. Recommended
settings are given in the table; the user should not set his/her parameters indis-

UMBC 49

DRAFT kCARTA Version 1.11,1.12,1.14

criminately. Note that the datafiles that are pointed to by the paths, need to be
for the correct endian versions.

UMBC 50

DRAFT kCARTA Version 1.11,1.12,1.14

Table 6: Setting up compile time file kcarta.param

kOrigRefPath this tells kCARTA where to look for the orig-
inal 100 layers AIRS reference profiles. One
should think of this as the definition of the
kCARTA database; it is essentially the 1962
US Standard Profile, tweaked slightly to re-
flect eg increased CO2 and CH4 levels, and
interpolated onto the AIRS 100 layers (101
pressure levels) grid.

IEEE BE vs IEEE LE

kWaterPath Path to the compressed data files for Water.
Typically ../DATA/WaterDataBase

kCO2Path Path to the compressed data files for linemix
CO2.
Typically ../DATA/CompDataBase

kCousin CO2Path Path to the compressed data files for cousin
CO2.
If available, typically
../DATA/CompDataBaseOld/
If unavailable, set to
../DATA/CompDataBase/ and ignore

kCompPath Path to the compressed data files for RestOf-
Gases (excl water,Co2).
Typically ../DATA/CompDataBase

kCKDPath Path to the CKD continuum data files (Wa-
ter Self and Foreign).
Typically ../DATA/General/CKD

kSolarPath Path to the solar spectral data files.
Typically ../DATA/General/SOLAR

kXsecFile path to xsecdata.dat, which stores the cross-
sectional cross-sectional absorption coeffi-
cients.
Typically, in DATA/Template subdirectory

UMBC 51

DRAFT kCARTA Version 1.11,1.12,1.14

kCompParamFile path to comp97.param, which stores gas
ID/frequency span in the compressed
database.
Typically, in DATA/Template subdirectory

kXsecParamFile path to xsec.param, which stores gas
ID/frequency combinations in the cross-
section databases.
Typically, in DATA/Template subdirectory

kProfLayer this is number of layers that kCARTA will
do computations for. This parameter should
be set to be the same as the number of layers
produced from klayers.x

kMaxAtm max number of atmospheres allowed. Does
not use too much memory, so 5 is a safe num-
ber

kGasStore max number of gases for which kCARTA al-
locates storage (from MOLGAS + XSCGAS
≤ kMaxGas). Typically, set to 38 (25 from
MOLGAS, 13 from XSCGAS)

kMixFilRows max number of mixfil rows that can be read
in. Remember that each set of mixedpaths
has kProfLayers mixed paths. Thus a safe
number = kProfLayers*(number of sets you
will define) So a forward model using four
sets of mixed paths (F,FW,FWO and FO),
will require this number set to 4*kProfLayers

kMaxPrint max number of printing options that can be
read in. Does not use too much memory, so
5(atmospheres)+2(one for gas spectra, one
for path spectra)=7 is a safe number. Note
that you should account for gas paths, mixed
paths and radiances from EACH atmosphere
as separate options

UMBC 52

DRAFT kCARTA Version 1.11,1.12,1.14

kEmsRegions max number of data points in any emissivity
data file. This means the number of regions
defined = kEmsRegions-1. This can typically
be set to 20

kMaxDQ max number of gases to compute d/dq Ja-
cobians for. Note that this uses up a LOT
of memory. All gases specified in nm jacobn
have their d/dq computed (ALL gases are
used in computing d/dT). Typically, set to 2
or 3.

kProfLayerJac this is set to kProfLayer if the user wants to
compute Jacobians while running the code,
else it is set to 1

kMaxPtsJac this is set to 10000 (number of wavenumber
points per kCompressed chunk - see kMaxPts
defined above) if the user wants to compute
Jacobians while running the code, else it is
set to 1

kMaxClouds tells the code how many clouds can be used
in radiance computations

kCloudLayers tells the code how many layers each cloud
can have

kXsecFormat tells the code if minor cross section gases
data are in separate kCompressed files for-
mat (+1) or binary file (-1). Will eventually
be phased out as we move towards supplying
only the kCompressed files for these gases

kWaterIsoBandStart tells the code where heavy water band starts
kWaterIsoBandStop tells the code where heavy water band stops
kWaterIsotopePath tells the codes where to find heavy water

(gasID=103) and water w/o isotope 4 (still
refereed to as gasID = 1) exist

UMBC 53

DRAFT kCARTA Version 1.11,1.12,1.14

kWaterPathj Path to the compressed data files for Water
for 80-150 cm−1.

kCompPathj Path to the compressed data files for RestOf-
Gases for 80-150 cm−1

kCKDPathj Path to the CKD continuum data files (Wa-
ter Self and Foreign) for 80-150 cm−1

kWaterPathk Path to the compressed data files for Water
for 140-310 cm−1.

kCompPathk Path to the compressed data files for RestOf-
Gases for 140-310 cm−1

kCKDPathk Path to the CKD continuum data files (Wa-
ter Self and Foreign) for 140-310 cm−1

... ...
kWaterPathv Path to the compressed data files for Water

for 12000-25000 cm−1.
kCompPathv Path to the compressed data files for RestOf-

Gases for 12000-25000 cm−1

kCKDPathv Path to the CKD continuum data files (Wa-
ter Self and Foreign) for 12000-25000 cm−1

kBoxCarUse tells the code how many points to BLOAT
the NLTE calcs by.

kRegrProf tells the code how many regression training
profiles used

kMaxPtsBox tells the code how much space to save for
NLTE optical depths

kBloatPts seems to be the same as kBoxCarUse, but
not really; too lazy to remember the differ-
ence, but I am sure there is one; probably if
kBloatPts == 1, then this is SPACESAVER
mode and so cannot do the bloated compu-
tations

UMBC 54

DRAFT kCARTA Version 1.11,1.12,1.14

caWeakCO2Path for each of the N gases in NLTE, we now
know how many chunks are in NLTE. The
gas molecules have many lines/bands; some
are weak and in LTE, some are strong and are
in LTE, while others are strong and in NLTE.
caWeakCO2Path is a path that points to
a compressed databse, that has the WEAK
lines in LTE precomputed.

kUpperAtmRefPath path to upper atm 100 layers reference pro-
files. These profiles were used in making up-
per atm kCARTA database.

caWeakUpperAtmCO2Path same as above, except it is the database for
the upper atm (70-120 km). Also has 100
layers x 10000 pts

caLineMixDir tells the code where the CO2 4 um LineMix
files are, for use in the LBL nonLTE compu-
tations.

caStrongLineParams tells code where the CO2 4 um line param-
eters are, for strong NLTE lines used in the
LBL nonLTE computations.
Must agree with the information in caaS-
trongLines (see below)

kNLTEProfLayer tells the code the maximum number of lay-
ers in the NLTE profiles supplied by Dave
Edwards GENLN2 (¡= 120 right now)

kRegrFile path to regression profiles that code needs
if it guesses VT. In the nm nonlte section,
user can give kCARTA a vib temp NLTE
profile in variable caaNLTETemp; if the user
does not do so and puts the name ’nlteguess’,
kCARTA will use a polynomial guess of the
NLTE temps (it could also read in 48 regres-
sion profiles to see which one most closely
matches the current profile, and then inter-
polate this profile in solar angle, but this is
a little too complicated)

UMBC 55

DRAFT kCARTA Version 1.11,1.12,1.14

kLOPEZPUERTAS if kCARTA tries to put in its own vib temp
profile based on those from the regression
profiles, it needs to know where to pick up
the NLTE files computed by Manuel Lopez-
Puertas

kNLTEPolyfits if kCARTA tries to put in its own vib temp
profile based on polynomial fits from the re-
gression profiles, it needs to know where to
pick up the coefficients for the bands and
QVs

To keep memory sizes manageable, the jacobian parameter declarations in
this file might be set to “1”. To allow kCARTA to perform jacobian computations,
turn off the “space save dimensions” that might be in the tar package by simply
uncommenting the lines above which these space saver dimensions are defined.

13 Compile time file scatter.param

Here the user can prune or enlarge the arrays used by the scattering codes
DISORT , RTSPEC, TWOSTREAM PCLSAM . This will have major con-
sequences on the amount of memory used when running kCARTA. However, it it
probably safer to use the param file as it is. We might supply the tar package
with the “space save dimensions” turned on; variables maxcly, maxulv,mammon
etc might be set to 1; if so simply uncomment the lines above which these space
saver dimensions are defined, to turn on the parameter value that DISORT can
work with.

14 The Driver Namelist File

At present, our kCompressed database spans the wavenumber range from 605
cm−1 to 2805 cm−1, with a point spacing of 0.0025 cm−1. kCARTAv0.97+ has
been written so that planned future extensions to the database can be easily
handled by this current version. (The planned extensions are from about 250
cm−1 to 605 cm−1, and will need a higher resolution than 0.0025 cm−1). Note that
the program has been written so that the user cannot “mix” regions that have
different wavenumber point spacings. In other words, if the starting frequency is

UMBC 56

DRAFT kCARTA Version 1.11,1.12,1.14

such that the corresponding file has a wavenumber spacing of 0.0001 cm−1, and
the stop frequency is such that the corresponding file has a wavenumber spacing
of 0.0025 cm−1, the program will stop.

This section gives the structure of the namelist file that controls the running
of kCARTA. Note that

• IMPORTANT Each run of kCARTA involves one driver namelist file.
Within this file, the user can either read in his own profile, or use one of the
supplied regression files. Thus one kCARTA run can only use one profile.

• At present the absorption spectra for the minor cross section gases can be
computed by either using a binary file containig all HITRAN92 data, or by
reading in kCompressed files for these gases. This is controlled by parameter
kXsecFormat above (set to -1 in kcarta.param distribution)

• While the code does allow one to compute the radiation measured by an
upward looking instrument, at present even the bottommost layers are prob-
ably too coarse for an accurate estimate. Using our new kLAYERS code,
the bottom AIRS layers can be subdivided finely, or the topmost layers can
be clumped together. In addition, if the user wants the sun to be included
in the FOV of the instrument, the program does not compute the variation
in the local solar angle; at present, it simply uses the variation in the local
path angle. We will be working on fixing these issues in the future.

• While reading this section, it might be helpful to look at the sample tem-
plate files in ../DATA/TemplateNML subdirectory. In addition, the following
points should be remembered :

– the namelist file is divided into about 12 separate sections. For exam-
ple, nm prfile contains the profile name, while nm frqncy contains
the start and stop frequencies.

– if at most the profile is driven by an RTP file (kRTP = -2,-1,0) then
keywords MOLGAS, FRQNCY, PRFILE, OUTPUT are required

– if the RTP file drives almost everything (kRTP = 1) then keywords
MOLGAS, PRFILE, OUTPUT are required

– keywords PARAMS, XSCFIL, WEIGHT, RADNCE, JACOBN, SCATTR,
NONLTE, SPECTRA are optional

– comment lines begin with !, character strings enclosed in quotes

UMBC 57

DRAFT kCARTA Version 1.11,1.12,1.14

• The namelist file is divided into separate sections, using the convention
$nm section$end. Within each section, the user will specify the variables
required to be changed; any variables that are not changed will be initial-
ized to dummy values that should not affect the running of kCARTA. The
namelist sections should be defined in the order they appear below.

• Looking at the example files, you will notice that each of the separate
namelist sections have a character string namecomment (of 33 characters)
associated with them. This is not required, but it is good practice, as it
clearly visually separates the sections from each other.

The following sections describe the formats and requirements for each of the
nm keywords.

14.1 nm params (optional)

Here the user can reset values of parameters specific to a particular run. All
lines beginning with “!” are considered comment lines and are ignored. If the
value of a parameter is not set here, it defaults to the defined value below. These
parameters affect the entire run of the program (including parsing in the driver
namelist input file).

The following line is repeated as many times as necessary

caP = NewValue

where caP is an string that specifies which of the following 8 parameters is to be
reset, and NewValue is the new setting of that parameter. The user should ensure
that NewValue is real or integer as required.

Using the list of variable names below, the user can choose to reset the values
corresponding to that particular variable. All of these parameters are considered
one-time settings, and so will affect an entire kCARTA run.

Following is the table which gives a listing of the parameter name, allowed
list of values for the parameter, and a description of what that setting of the
parameter does. The boldface indicates the default setting of the parameter. If
the user wants the program to use this default, he/she does not have to refer
to the parameter in nm params. Thus, if the user wants to use all the default
settings, this section need not appear in the driver namelist file, or just be blank.
All parameter values are integers. At present there is space for 12 parameters,
but only 9 are used.

UMBC 58

DRAFT kCARTA Version 1.11,1.12,1.14

Table 7: Setting up parameters in nm params

PARAM PARAM ALLOWED DESCRIPTION
NUMBER NAME VALUES

1 kLayer2Sp -2,-1,1,2 (integer) Controls output for paths/
mixed paths, i.e., specifies whether
to output transmittances or optical
depths.

-2 Output Layer transmittance
t(i) = exp(−k(i))

-1 Output Layer Optical depth
k(i)

1 Output Layer-to-Space Optical
Depth
k2s(i) =

∑n
j=i(k(j))

2 Output Layer-to-Space transmit-
tance
t2s(i) = exp(−

∑n
j=i k(j))

2 kCKD -1,N (integer) turn water continuum ver-
sions on/off. If turned on, specifies
which of the following models to use

0,21,23,24 Official CKD releases prior to Jan-
uary 2003

1 MT CKD releases (January 2003)
2 our modified MT CKD 1 (July

2003)
51,55,60 derived by Machado, Strow, Han-

non from RAL + AIRS data)
12,13,50,52,56 will be gotten rid of eventually

-1 no continuum
0 use water continuum CKDv0
21 use water continuum CKDv2.1
23 use water continuum CKDv2.3
24 use water continuum CKDv2.4
60 use water continuum CKD-MSH

v60
1 use water continuum

MT CKDv1

UMBC 59

DRAFT kCARTA Version 1.11,1.12,1.14

2 use water continuum MT CKDv1,
modified

3 kGasTemp -1,1 (integer) how to set mixed path ver-
tical temperatures for use in radia-
tive transfer algorithm and Jacobian
algorithm. The program can either
use the CO2 temperature, or do a
weighted average over all gases.

-1 do weighted gas average
1 use CO2 layer temperatures (if

present)
4 kLongOrShort -1,0,1 (integer) whether or not to output

all driver namelist file information
(including path profiles and weight-
ing table lines) into output binary
file header, or to output only essen-
tial information into the header

1 output complete header info to
output binary file

-1 output summary header info to out-
put binary file (does not repeat mix-
ing table/gas profile info)

0 output bare minimum header info,
and bare data

5 kJacobOutput -1,0,1,2 (integer) one of 3 output styles
for Jacobians. They can be
in raw dR/dsm, dR/dsm∆sm or
d(BT)/dsm∆sm where R is radi-
ance, sm is layer gas amount or tem-
perature for layer m and BT is the
brightness temperature. ∆sm is the
amount of gas in layer m, or a 1 K
change in temperature

-1 output dR/dq,dR/dT
0 output dR/dq * q, dR/dT
1 output d(BT)/dq * q,

d(BT)/dT where q is the
gas profile being perturbed.
Note d(BT)/d(ln(q)) = q d(BT)/dq

UMBC 60

DRAFT kCARTA Version 1.11,1.12,1.14

2 output d(BT)/dq, d(BT)/dT
Independent of the value of
kJacobOutput, the second
smaller Jacobian file always
contains radiances computed at
surftemp,column gas perturbation
values of 1.0K and 0.1 respectively.

6 kFlux -1,1,2,3,4,5 (integer) to calculate flux (+1,+2),
outgoing radiation at all levels(+3),
OLR at TOA (+4), OLR at TOA
and ILR at GND(+5) or nothing
(-1). There are 2 different output
styles for the computed “fluxes.”
Note that the user has to read in the
computed “flux” for each layer, and
then sum over the computed fluxes,
at the output resolution, to get the
correct units. Also note that at
present, only clearsky fluxes, or sin-
gle cloud layer twostream fluxes, or
multiple cloud layer pclsam fluxes,
are possible

-1 no flux computations
1 flux at all levels : radiance * angle
2 flux at all levels : Kelvin/day
3 OLR at all levels : radiance * angle
4 OLR at TOA : radiance * angle
5 ILR at gnd; OLR at tropopause and

TOA : radiance*angle
6a kFlux 0,-1,1,2,3 (integer) to output Planck modi-

fiers if NLTE computations are be-
ing done (+1), or nothing output (-
1).

-1 no output planck modifiers
0 output planck modifers

1,2,3 no output planck modifiers

UMBC 61

DRAFT kCARTA Version 1.11,1.12,1.14

7 kSurfTemp -1,1 (integer) use this to either use
the surface temperature found in
nm radnce, or to use the surface
temperature found in nm radnce as
an offset to the temperature found
by interpolating the surface pres-
sure with respect to the AIRS pres-
sure levels/profile layer tempera-
tures. Note that if the atmosphere is
being defined using the information
in an RTP file (kRTP = 1), then the
only possible setting for kSurfTemp
is -1

-1 use surface temps in nm radnce
+1 interpolate profile, and add on to

surface temps in nm radnce

8 kTempJac -2,-1,0 (integer) how to compute tem-
perature jacobians. This ja-
cobian can be computed as a
sum over d/dT(Planck ×τ), or as
d/dT(planck) or as d/dT(τ). Note
that whether you use kTempJac =
0,-1,-2 the gas amount jacobians
should not get messed up. This pa-
rameter only works for a downlook-
ing instrument (ie has no effect on
calculating the Jacobians for an up-
look instrument)

0 use temp dependence in both
Planck and τ

-1 use temp dependence only in τ .
Note this should not mess up gas
amount jacobians

-2 use temp dependence only in
Planck. Note this should not mess
up gas amount jacobians

UMBC 62

DRAFT kCARTA Version 1.11,1.12,1.14

9 kRTP -2,-1,0,1 (integer) whether or not to use an
RTP file. Can have arbitrary num-
ber of layers per gas in each pro-
file, as long as N ¡= kProfLayer (ex-
cept fpr the kRPT=-1 case, where
number of layers per gas must equal
kProflayer

+1 RTP style profile, RTP atmo-
sphere, scatter defn

0 RTP style profile, user atmo-
sphere, scatter defn

-1 old style “klayers” profile, user
atmosphere, scatter defn. This
case NEEDS number of layers
in profile == kProfLayer

-2 GENLN4 style “layers” profile,
user atmosphere, scatter defn

10 kActualJacs -1,20,30,40,50,100 (integer) how many jacs to actually
do (dump zeros for the rest). De-
fault (-1) is to compute all profile
jacobians; others (20:50) dump out
zeros for stuff not computed
option 100 dumps column gas,
stemp jacobians

-1 do ALL profile jaco-
bians (gases(z),temp(z),
wgt(z),surface)

20 only do Q(z) jacs
30 only do T(z) jacs
40 only do W(z) jacs
50 only do S jacs
100 only do column and stemp jacs

100ABCXYZ only do column and stemp jacs, with
radiating atmosphere perturbed be-
tween layers ABC to XYZ
read with “readkcbasic.m()

Parameter 3 (kGasTemp) is relevant only for a radiance (and jacobian) calcu-
lation. If set to +1, and CO2 is in the gas profile, the layers of the atmospheres

UMBC 63

DRAFT kCARTA Version 1.11,1.12,1.14

built from the mixed paths, are set to the temperatures of the CO2 If CO2 is not
present in the profile, or if the parameter is set to -1, the layer temperature that
is used is a weighted average over the gases.

Options -1,20,30,40,50 for Parameter 10 (kActualJacs) produces (large) jaco-
bian profile files, to be read in by “readkcjac.m”. If the user wishes to only dump
out column gas jacobians, and stemp jacobian, a much smaller file that can be read
in using “readkcbasic.m” is produced when option 100 is used. The relationship
between the column and profile jacobians is

TOA∑
l=GND

Jq
l (n) = Jcolq(n)

where q is the gas ID, l is the layer and n is the frequency index
If you use kActualJacs = 100; then it perturbs the entire atmosphere. If you use

kActualJacs = 100ABCXYZ; then it perturbs the radiating atmosphere between
ABC and XYZ wrt surface. So eg if the atmosphere was defined from (surface)
1013 mb to (TOA) 0 mb, the radiating layers correspond to KCARTA/KLAYER
layers = 4:100. So if kActualJacs = 100001004, the first four of these radiating
layers are used in the jacobian, which are 4,5,6,7. Code also does this for UPLOOK
instrument : if the atmosphere was defined from (TOA) 0 mb to (surface) 1013
mb, the radiating layers correspond to KCARTA/KLAYER layers = 100:4. So
if kActualJacs = 100001004, the first four of these radiating layers WRT surface
are used in the jacobian, which again are 4,5,6,7 (instead of first four in the defn
of the atmosphere, which would be 100,99,98,97). WARNING : 100ABCXYZ =
column gas/temp from *radiating* layers wrt surface ABC to XYZ, and stemp.
Note d/dT(i) in this case accounts for layer temp changes, and includes the OD
changes due to temp changes; so it maybe a very good estimate, as it does radiative
transfer with correct background thermal

14.2 nm frqncy (mandatory)

This section specifies the frequency start/stop endpoints. If kRTP = -2,-1,0 the
user has to speciy the start/stop wavenumbers that kCARTA has to process. The
format here is

rf1 =
rf2 =

Note that the start/stop values could be altered by the program at run time, so
that entire 10000 point chunks are output each time. For instance if the start,stop

UMBC 64

DRAFT kCARTA Version 1.11,1.12,1.14

frequencies are specified by the user as 720.0 780.0, the program will reset these
values to 705.0 and 779.9975 so that entire 10000 point chunks are output (705-
729.9975, 730-754.9975, 755-779.9975).

If kRTP = +1, the RTP file must contain the channel minimum and maximum
wavenumbers (head.vcmin and head.vcmax) that kCARTA will chunk through.
kCARTA will automatically select start and stop endpoints that include the ex-
tremeties of these numbers.

kCARTA can currently compute spectra between 605.0 to 2830 cm-1, and so
head.vcmin and head.vcmax need to be set within this interval. 605.0 = kaM-
inFr(2), 2830.0 = kaMaxFr(2) ... are the extremeties of our current database; in
the future, when we go to variable wavenumber spacing, this will be changed.

All database files starting with “r” have a point spacing of 0.0025 cm−1. These
files currently span 605 to 2805 cm−1.

In the future we will extend the frequency region that kCARTA can process.
All database files starting with “q” will have a point spacing of 0.001 cm−1. These
files will probably span 205 to 605 cm−1.
All database files starting with “s” will have a point spacing of 0.005 cm−1. These
files will probably span 2405 to 2805 cm−1.

The start and stop frequencies specified in this section should be set with
the above wavenumber restrictions in mind, as kCARTA will not allow a run
that involves “mixing” of these database files. For example, if the start/stop
frequencies are 605.0 and 2805.0 respectively, this means only files from the “r”
database are required, and kCARTA will allow this run to proceed. However, if
the start/stop frequencies are 405.0 and 805.0 respectively, this means that files
from the “q” and “r” databases are required, and kCARTA will not allow this run
to proceed.

14.3 nm molgas (mandatory)

This section specifies molecular gas ID’s. The format is

iNgas =
iaGasesNL = Lgases(1), Lgases(2), ... , Lgases(iG)

or

iNgas = -1

UMBC 65

DRAFT kCARTA Version 1.11,1.12,1.14

iNgas specifies how many molecular gas ID’s to read in. If iNgas = -1, then the
program automatically includes all gases that exist in the compressed database.
If iNgas > 0 then the program requires a list of iaGasesNL valid GasID’s (between
1and 28)

Note there is a a subtle point here, the water continuum. If kCKD ≥ 0 then
the user wants water vapor plus continuum. Hence gasIDs 101 and 102 will also be
included as two separate “gases, ” if iNgas = −1. If the user specifies kCKD ≥ 0
and lists the molgases to be used, but neglects to use gasIDs 101 and 102, the
program will halt. Similarly if the user specifies kCKD < 0 (no continuum) but
includes gasIDs 101,102 in the list of molgases to be used, the program will halt.
However if the user specifies kCKD < 0 (no continuum) and uses iNgas = −1, the
program will ingest this, knowing that gasIDs 101,102 are NOT to be used.

14.4 nm xscgas (optional)

This section specifies cross-section gas ID’s. The format is similar to above,

iNxsec =
iaNxsecNL = Lxsec(1), Lxsec(2), ..., Lxsec(iX)

or

iNxsec = -1

or

iNxsec = 0

where iNXsec specifies how many cross-section gasID’s to read in. If iNXsec = −1,
then the program automatically includes all gases that exist in the cross-section
database. If iNXsec> 0 then the program requires a list of iaNxsecNL valid GasID’s
(between 51 and 63). If iNXsec = 0 then no cross section gases will be used.

The total number of gases to be used in building up the atmosphere is

iN = iNumGases = iNgas + iNxsec.

14.5 nm prfile (mandatory)

If kRTP = -2,-1, this means the user wishes to use an old style (text) GELN4/ kLAY-
ERS file for the profile. So in addition the user simply has to specify the name of the
kLayers profile file. If kRTP = -1, the number of layers N for each gas MUST equal
kPRofLayers; else we need N ≤ kProfLayer

UMBC 66

DRAFT kCARTA Version 1.11,1.12,1.14

caPfname =
Inside the profile file, the following data is required:

• an integer iNpath that gives the total number of paths in the datafile. For
each of the iNumGasesInProfile gases, there should be kProfLayer paths, giving
a total of iNpath=iNumGasesInProfile*kProfLayer paths. This number should
correspond to all the iNumGases*kProfLayer required paths corresponding to
the gases found in MOLGAS and XSCGAS above. If it is less than the required
number, the program will stop

• The rest of the strings contain the actual gas path information, repeated kProflayer
times for each of the iNumGasesInProfile gases. Note that the program only
saves in memory the gas profiles for the gas ID’s actually found in MOL-
GAS,XSCGAS. An example file is in the DATA/TemplateNML subdirectory. This
is file testprof0, which contains a 100 layer water and a 100 layer ozone profile,
for the US Standard Profile.

The datafile produced by kLayers is therefore in the following format :
iNpath (where iNpath=iNumGases * kProfLayer)

idgas amt t dt p dp partp height repeat × kProfLayer for gas 1
idgas amt t dt p dp partp height
...
idgas amt t dt p dp partp height repeat × kProfLayer for gas 2
idgas amt t dt p dp partp height
...
idgas amt t dt p dp partp height repeat × kProfLayer for gas iN
idgas amt t dt p dp partp height

idgas gives the Gas ID (by the end of the file, all gases found in GASFIL and XSC-
GAS must have been found in file caPfname). amt,t,p,partp are required during the
uncompressions, and stand for gas integrated amount (in the GENLN2 units of kilo-
moles/square centimeter), temperature in Kelvin, layer pressure and gas partial pres-
sure in atmospheres. height is the layer height, in kilometers (could be used during
the radiative transfer, if user wants to account for the local radiation angle changing
due to curvature of the earth)

The two other variables, dt and dp, at present are not needed, and can be set to
0.0.

UMBC 67

DRAFT kCARTA Version 1.11,1.12,1.14

If kRTP = 0,+1, this means the user wishes to use an new style netcdf RTP file
for the profile. So in addition the user has to specify the name of the kLayers profile
file. The number of layers N for each gas must be less that or equal to kProfLayer :
N ≤ kProfLayer

caPfname =
as well as state which of the profiles should be used iRTP =
The RTP profile file will have the gasID, layer gas amounts, pressures and temper-
atures. The partial pressures (used only by water, for the continuum as well as for
broadening effects) are computed by kCARTA

In this section, if the RTP file drives kCARTA to include an atmophere, computa-
tion, then one more variable must be set at this point

iMPSetForRadRTP =
This variable gives the MP set that is used to construct the atmosphere. For further
information, the reader is referred to the namelist section nm radnce (see below).

Additionally, in this section, if the RTP file drives kCARTA to include a cloud
scattering computation, then at least three more variables must be set at this point.
Case 1 allows for the main RTP file to set the cloud parameters for two cloud slabs,
each between ptop, pbot for iwp, dme combinations, and only requires the following
three variables (in addition to the above info in the RTP file)

iNclouds RTP =
caaCloudFile =
iBinORAsc=

The first (integer) variable tells kCARTA how many clouds to expect. The second
(character*80) variable gives the name of the file that contains the cloud scattering
information (such as asymmetry, single scattering albedo and extinction). The third
(integer) parameter tells the code whether the files are in ascii format or binary format
(-1/+1). These files need to be in the same format (producde by running Frank
Evans’ Mie scattering code) as that used to drive the scattering computations in the
namelist section nm scattr (see below), to which the user is referred to.

However, the user can also set arbitrary cloud profiles using KLAYERS. The cloud
layer info must come in via a RTP file, which has gases 201,202,203 for water, ice,
aerosol respectively. The name of this RTP file is

caCloudPFname=
and its cloud info (for profile iRTP must correspond to that read in for the gas
profiles (ie have same pressure levels, layers, number of layers etc). Integer variable
iaCloudF ile associate the cloud scattering files with each cloud in the header (reme-

UMBC 68

DRAFT kCARTA Version 1.11,1.12,1.14

ber, these are gases 201, 202, 203 in the .rtp file), while integer variables iaCloudType
associates these with water clouds(100-199), ice clouds (200-299), dust clouds(300-
399). Real variable raCloudDME associates the effective particle diameter with each
cloud. An example is

$nm_prfile

namecomment = ’******* PRFILE section *******’

iBinOrAsc = 1

iMPSetForRadRTP = 1

iRTP = 1

caPFname = ’junk_pin_feb2002_sea_airsnadir_op.1cld.sun.rtp’

iNclouds_RTP = 2

caCloudPFname = ’dne’

iNclouds_RTP = 2

caCloudPFname = ’try_klayers_cloud.op.rtp’

iaCloudFile(1) = 201

iaCloudFile(2) = 202

iaCloudType(1) = 100

iaCloudType(2) = 200

raCloudDME(1) = 10.0

raCloudDME(2) = 30.0

caaCloudFile(1) = ’MIEDATA/WATER250/water_405_2905_250’

caaCloudFile(2) = ’MIEDATA/CIRRUS/cirrus_405_2905_220’

$end

If caCloudPFname is set to dne or omitted then the program assumes the cloud info
is coming in slab format, as set in RTP file caPFname. Else it assumes a cloud profile
info is coming in via RTP file caCloudPFname.

UMBC 69

DRAFT kCARTA Version 1.11,1.12,1.14

14.6 nm weight (optional)

If this section is not included, then no radiance calculations will be attempted, even
if nm radnce exists. In this section, the following are required. Other than the first
line, which contains an integer, the input information in this section is inscribed using
strings (with opening and closing single quotes).

The first line contains the integer number of sets of kProfLayer mixed paths in the
table, iNpmix (which gives a total of kProfLayer*iNpMix mixed paths defined).

The next few lines each contain, for each set, the weights assigned to the gases in
one of three formats. Thus this section would look like

iNpmix
1 set of weights
2 set of weights
3 set of weights
...

where the set of weights is in one of the following possible formats. Note that each
line you write out, should be preceded by ’caaMixFileLines(x) = ’ , where “x” is a
counter that specifies which line you have written out. Also, the set of weights needs
to be enclosed in single quotes.

caaMixFileLines(x) =
’iN list of weights’

or
caaMixFileLines(x) =

’iN -1 rW -1’

or
caaMixFileLines(x) =

’iN -1 rW iG’
caaMixFileLines(x+1) =

’i1 r1 i2 r2 ... iG rG’

Each set of weights defines kProfLayer mixed paths. Thus if the user specifies
that there are 5 sets of weights in the nm weight section (iNpmixtemp=5), then
500 mixed paths are defined by kCARTA. We now explain the three formats, giving
examples.

UMBC 70

DRAFT kCARTA Version 1.11,1.12,1.14

14.6.1 format iN list of weights

For mixed path set iN, the weights for the gases are specified by the list of weights
(one for each of the gases in MOLGAS/XSCGAS). Thus for example, if there are a
total of 5 gases (from MOLGAS/XSCGAS), then

’1 1.0 1.1 1.01 1.0 1.0’

is valid. The leftmost 1 identifies this as the first set of weights in the section. The
next five numbers are the weights of the 5 gases, and says that the first, fourth and
fifth gases have a weight of 1.0, while gases 2,3 have weights of 1.1,1.01 respectively.

14.6.2 format iN -1 rW -1

For mixed path set iN, the weights for ALL the gases are specified by rW Thus again,
if there are five gases, then

’2 -1 1.0 -1’

says that all five gases are weighted by 1.0 (the leftmost number 2 indicates this is
the second set of weights in our hypothetical nm weight section)

14.6.3 format iN -1 rW iG

This format specifies that for mixed path set iN, all the gases have a weight of rW,
except for iG of the gases. These iG gases then have their weights specified by the
additional lines(s), where the gas ID is followed by the weight of that gas.

’i1 r1 i2 r2 ... iG rG’

Then, for example, a set of gas weights that are explicitly specified in subsection
14.6.1 above, 1 1.0 1.1 1.01 1.0 1.0, could be specified equally by the following two
lines

’1 -1 1.0 2’
’2 1.1 3 1.01’

On the first line, the leftmost 1 specifies this is the first set of mixed paths being
defined. All gases have a weight of 1.0, except for 2 gases. The next line then lists
the gasIDs and the weights associated with these 2 exceptions.

14.6.4 Detailed example

Assuming 6 gases have been found in MOLGAS/XSCGAS, the following WEIGHT
table defined in a file, then

UMBC 71

DRAFT kCARTA Version 1.11,1.12,1.14

3
caaMixFileLines(1) =

’1 -1 1.0 -1’
caaMixFileLines(2) =

’2 -1 1.0 2’
caaMixFileLines(3) =

’101 1.8 102 1.1’
caaMixFileLines(4) =

’3 1.1 1.2 1.3 1.4 1.5 1.6’

defines 3*kProfLayer mixed paths.

• The first kProfLayer have all 6 gases equally weighted by 1.0, in all layers (ie
the weight table is 1.0 1.0 1.0 1.0 1.0 1.0)

• The next kProfLayer have all 6 gases equally weighted by 1.0, in all layers. The
exception are 2 gases—gasID 101 (water self) has weight 1.8 in all layers, gasID
102 (Water Foreign) has a weight of 1.1 in all layers (ie the weight table is 1.0
1.0 1.0 1.0 1.8 1.1)

• The last kProfLayer have weight 1.1 for the first gas (all layers),weight 1.2 for
the second gas (all layers), ..., weight 1.6 for the sixth gas (all layers) (i.e., the
weight table is 1.1 1.2 1.3 1.4 1.5 1.6)

14.7 nm radnce (optional)

If this section is ignored, no radiance calculation will be done (only absorption coeffs or
mixed path spectra can be output). If this section is present, without nm weight, no
radiance calculations can be performed. Also note : if this section is present, without
any radiance from a chosen atmosphere being specified in the nm output section, the
program will not bother to do a radiative transfer for that defined atmosphere. This
also means that no Jacobian or flux calculations will be done for that atmosphere.
Satellite angles are with respect to the vertical.

If kRTP = −2,−1, 0 this means the user will be defining the atmosphere, using
the specifications stated below. If kRTP = +1 then kCARTA will use the atmosphere
definitions specified in the RTP file that contains the profile; the documentation can
be found in KLAYERS/Doc. Only ONE atmosphere can be read in from the RTP
file.

UMBC 72

DRAFT kCARTA Version 1.11,1.12,1.14

If kRTP = -1, the number of layers N for each gas MUST equal kPRofLayers; else
we need N ≤ kProfLayer
Note that if a radiance computation is needed, and the lowest pressure (highest alti-
tude) level in the RTP file is greater than 10.0 mb, the code will halt, as there will be
inaccurate radiance computations performed.

14.7.1 kRTP = -2,-1,0

We now assume that kRTP = −2,−1, 0 and so the user needs to define the at-
mosphere(s) in the namelist file, as follows. The first line has an integer iNatm that
specifies how many atmospheres are going to be defined in this section. For each of
those atmospheres, the user has to specify the start and stop pressures, satellite view
angle, information specifying whether solar and background thermal are on or off, and
the emissivity. Thus this section would look like

iNatm

iaMPSetForRad(1) =
raPressStart(1) =
raPressStop(1) =
raTspace(1) =
raTsurf(1) =
raSatAngle(1) =
raSatHeight(1) =
iakSolar(1) =
rakSolarAngle(1) =
cakSolarRefl(1) =
rakSolarRefl(1) =
iakThermal(1) =
rakThermalAngle(1) =
rakThermalJacob(1) =
caEmissivity(1) =
raSetEmissivity(1) =

iaMPSetForRad(2) =
raPressStart(2) =
raPressStop(2) =
raTspace(2) =

UMBC 73

DRAFT kCARTA Version 1.11,1.12,1.14

raTsurf(2) =
raSatAngle(2) =
raSatHeight(2) =
iakSolar(2) =
rakSolarAngle(2) =
cakSolarRefl(2) =
rakSolarRefl(2) =
iakThermal(2) =
rakThermalAngle(2) =
rakThermalJacob(2) =
caEmissivity(2) =
raSetEmissivity(2) =

...

OR iNatm
iaMPSetForRad = i1,i2, ...
raPressStart = r1,r2, ...
raPressStop = r1,r2, ...
raTspace = r1,r2, ...
raTsurf = r1,r2, ...
raSatAngle = r1,r2, ...
raSatHeight = r1,r2, ...
iakSolar = i1,i2, ...
rakSolarAngle = r1,r2, ...
cakSolarRefl = ca1,ca2, ...
rakSolarRefl = r1,r2, ...
iakThermal = i1,i2, ...
rakThermalAngle = r1,r2, ...
rakThermalJacob = r1,r2, ...
caEmissivity = ca1,ca2, ...
raSetEmissivity = r1,r2, ...

Note that if the instrument is upward looking, the last 8 parameters
(iakSolar,rakSolarAngle,...,raSetEmissivity) are read in and ignored.

iaMPSetForRad(iI) is an integer specifying the program which set of mixed paths to
use (1 corresponds to the first set of mixed paths, numbered 1 to kProfLayer,

UMBC 74

DRAFT kCARTA Version 1.11,1.12,1.14

2 corresponds to the second set of mixed paths, numbered kProfLayer+1 to
2*kProfLayer etc. Refer to the section on nm weight above).

The program internally defines the atmospheres sequentially from 1 to iNatm,
so that the user can easily specify the output he/she desires for any of the
atmospheres. Thus the user should remember that iaMPSetForRad(iI)... refer
to the mixed path weight sets defined in nm weight above, in any order, and
NOT to the atmosphere number.

raPressStart(iI),raPressStop(iI) are real numbers (units of millibars) that define the
direction of radiation travel thru the atmosphere by specifying the pressures that
constitute the upper/ lower boundaries.

• if the pressures are less than 0.005 mb, they are reset to 0.005 mb (top of
100th AIRS layer 100km)

• if the pressures are greater than 1100.0 mb, they are reset to 1100.0 mb
(bottom of 1st AIRS layer)

• if rStartP is greater than rStopP then the radiation is travelling from high
pressure (low in the atmosphere) to low pressure (higher up in the atmo-
sphere), and so the instrument is downward looking. In this case, the user
can further fine tune the radiative transfer model, by specifying surface
temperatures, emissivities and so on (see below)

• if rStartP is less than rStopP then the radiation is travelling from low
pressure (high in the atmosphere) to high pressure (lower down in the
atmosphere), and so the instrument is upward looking. Parameters such
as surface temperature and emissivities are now meaningless (but they must
be set to dummy values for the program to read in.

• the start and stop pressures are flexible enough to allow the user to be
able to define fractional top and bottom layers. Please refer to Section [?]
below

raTSpace(iI) is a real number, stating the blackbody temperature of the background
space(' 2.6K).

raTSurf(iI) is a real number, stating the temperature of the earth’s surface. Note for
an upward looking instrument, this value is read in and ignored. Also note that
depending on the value of kSurfTemp set in nm params, this value should

UMBC 75

DRAFT kCARTA Version 1.11,1.12,1.14

be set with care!!!
If kSurfTemp is less than 0.0, then for a downlooking instrument, the program
will read in raTSurf(iI) and use this for the actual surface temperature.
If kSurfTemp is greater than 0.0, then for a downlooking instrument, the
program will read in the surface temperatures raTSurf(iI) in nm radnce, and
add these values to a pressure interpolated boundary temperature it computes,
for the actual surface temperature.

raSatAngle(iI) is a real number that specifies the satellite view angle (wrt vertical)
in degrees. For a downward looking instrument, this is the angle between the
satellite looking down to the center of the earth, and the satellite looking away
at a point on the surface of the earth. For an upward looking instrument, this
is the angle between where the satellite is looking at and the local vertical.

raSatHeight(i) is a real number that specifies the satellite height (in km). This ac-
counts for the slight change of angle wrt vertical, as radiation travels between
the earth’s surface and satellite, due to the intrinsic curvature of the earth’s
surface.

• If this value is set to a negative amount, then the angles used in all layers
are the same (specified by Sat Angle above).

• if this value is set to a positive amount, then the angles used in all layers
are a modification to Sat Angle.

• if the satellite is upward looking, and if parameter Sat Height is positive,
the code automatically sets the height of the instrument to 705 km. (In
other words it tries to reverse trace the path that a ray from a downward
looking instrument at 705 km would take). In addition, at present, if the
sun fills the FOV, the local sun angle that is used is simply the local mixed
path angle. As mentioned elsewhere, since the present layering is probably
too coarse for an upward looking instrument, more work will be done on
the upward looking algorithm in the future.

iakSolar(iI) is an integer (limited to -1, 0 or 1) that tells the program whether or
not to include solar radiation for up or downlooking instruments

• (+1) : include solar radiation, using actual solar spectral data

• (0) : include solar radiation, using T=5800K

UMBC 76

DRAFT kCARTA Version 1.11,1.12,1.14

• (-1) : do not include solar radiation

• Obviously, if the sun angle and the satellite view angle are different for an
uplook instrument, then the sun being on will have no effect if there is no
cloud scattering.

rakSolarAngle(iI) is a real number specifying the sun angle, in degrees. It has to be
between 0.0 and +90.0, or iaKSolar will be reset to -1

cakSolarRefl(iI) is a character allowing the user to assign a file to read sun reflectance
values from. If this is not specified, then

• if raKSolarRefl ≤ 0, (1− ε)/π is used across the spectrum.

• if raKSolarRefl ≥ 0, this value is used across the spectrum.

• If DISORT scattering code is used, then the solar reflectance cannot be
set by the user ie it is always (1− ε)/π

• If the filename specified is DISORT scattering code is used, then the solar
reflectance can be set by the user, and so can violate refl = (1− ε)/π

iakThermal(iI) is an integer (limited to -1, 0 or 1) that tells the program whether
or not to include the effects of reflected background thermal radiation.

• If set to −1, no background thermal effects are included

• If set to 0, background thermal effects included are computed using our
fast diffusive approximation at lower layers, where it matters, while the
upper layers use an acos(3/5) diffusive approximation. Also, parameter
rThermalAngle is meaningful.

• If set to +1, background thermal effects included are computed using a
Gaussian quadrature over the zenith angles (slow)

• If DISORT scattering code is used, then background thermal is always ON

rakThermalAngle(iI) is a real number specifying the diffusivity angle, in degrees (whose
magnitude must be less than 90.0). This parameter has meaning only if iTher-
mal = 0, else the background thermal is either not computed or computed
accurately using Gaussian quadrature.

• If the user specifies a positive value between 0.0 and +90.0, this angle will
be used at all layers.

UMBC 77

DRAFT kCARTA Version 1.11,1.12,1.14

• If the user specifies a negative value, a value of acos(3/5) will be used at
the upper layers, while our optimum diffusive angle will be used at lower
layers, the combination of which is a better approximation than using a
single diffusive angle at all layers.

• If JACOBN is set, then this could lead to some discrepancies. The clear
sky jacobian assumes all angles are acos(3/5), while the radiative transfer
will use whichever angles it needs, as set by rakThermalAngle

• If DISORT scattering code is used, then this angle is irrelevant

Thus if iakThermal(iI) = 0, then rakThermalAngle(iI) should be used with care.
If it is set at a negative value x, then for the upper layers the diffusive angle
acos(3/5) is used for the reflected thermal, while for the lower layers, a pa-
rameterized optimum diffusivity angle is used. If it is set at a positive value,
then for all layers, the diffusive angle acos(x) is used for the reflected thermal.
acos(3/5) = 53.1301 degrees

Table 8: Diffusivity Options.

kThermalAngle -x use parameterized optimum diffusivity angle at
lower layers, acos(3/5) at higher layers

+x user specified value (in degrees) at ALL layers

iakThermalJacob(iI) is an integer (limited to -1 or 1) that tells the program
whether or not to include the effects of background thermal

• (-1) : do not include background effects in radiance Jacobian

• (+1) : include background effects in radiance Jacobian

• if effects of background thermal are to be included in the radiative transfer
algorithm, but not in the Jacobian, there could be large errors (as much
as 30 %) in the Jacobians of the lower levels.

• to speed up the Jacobian code, an angle of acos(3/5) is used for all layers,
instead of the optimum diffusivity angle being used at the lower layers.
Thus the setting of parameter kThermal is ignored here.

Either the emissivity data file caEmissivity(iI) is a text file containing the (wavenum-
ber dependent) surface emissivity, or emissivity value raSetEmissivity(iI) is a real num-
ber for the surface emissivity (constant at all wavenumbers). If a emissivity file is to

UMBC 78

DRAFT kCARTA Version 1.11,1.12,1.14

be read in then raSetEmissivity(iI) MUST be set to a negative value; if it is set to a
positive value, this is what will be used across the entire wavenumber range. For an
upward looking instrument, the surface emissivity file/values are read in and ignored.

To summarize,

for a downward looking instrument (rStartP > rStopP)

iaMPSetForRad tells which set of mixed paths to use
raPressStart is the pressure of the starting layer
rPressStop is the pressure of the stop layer
raTSpace is the space blackbody temperature (2.6k)
raTsurf is the surface temperature
raSatAngle is the satellite angle (in degrees)
raSatHeight (in km) indicates whether to modify SatAngle
iakSolar (-1, 0 or 1) sets solar radiation on/off
rakSolarAngle sets the solar zenith angle
cakSolarRefl is a file for the solar reflectance
rakSolarRefl sets the solar reflectance (-1 means use (1-e)/pi or cakSolarRefl)
iakThermal (-1, 0 or 1) sets the reflected thermal on/off
rakThermalAngle sets the diffusivity angle
iakThermalJacob sets thermal background inclusion in Jacobian on/off
caEmissivity is a file containing the emissivity parameters OR

raSetEmissivity specify a constant emissivity value

For an upward looking instrument (rStartP < rStopP)

14.7.2 The Emissivity and Solar Reflectance Data Files

This is a text file containing the (wavenumber dependent) surface emissivities or solar
reflectances are in the following format

iE
rS(1) emiss(1)
rS(2) emiss(2)
... ...
rS(iE) emiss(iE)

where iE is an integer that tells how many emissivity/reflectance points are going to
be set (minimum of 2). The frequencies should be input in ascending order. Each of
the iE sets of data contain

start-freq emissivity

UMBC 79

DRAFT kCARTA Version 1.11,1.12,1.14

Thus the total number of regions defined by the file is iE-1. A linear interpolation of
emissivities is done between the i,i+1th data points set in the file, rS(i) and rS(i+1).
For frequencies less than the minimum frequency defined in the file, the emissivity
is set to the corresponding emissivity value; for frequencies more than the maximum
frequency defined in the file, the emissivity is set to the corresponding emissivity value.

For example, if the start/stop frequencies from nm frqncy were 705.0 755.0 and
the following was found in the emissivity data file

2
730.0 0.9
750.0 0.95

then the following emissivities are used

705.0-730.0 0.9
730.0-750.0 0.9+(0.05)*(freq-730.0)/(750.0-730.0)
750.0-755.0 0.95

14.7.3 kRTP = +1

As mentioned above, the documentation for this will be found in the KLAYERS/Src/Doc
directory. If kRTP = 1 then only ONE radiance can be computed for ONE single
atmosphere. Parameter kSurfTemp has to be set to -1, as the RTP file specifies the
surface temperature. From the WEIGHT section, one still needs to set IAMPSet-
ForRad, to tell kCARTA which set of weights to use for the atmosphere. The rest of
the variables needed to define the radiating/emitting/absorbing atmosphere are set as
follows.

The atmosphere start/stop pressures depend on prof.spres,prof.pobs and

prof.upwell!! In addition, the observing pressure needs to be set as well.

see more explanations below !!!!

a) rPressStop = 0.0 (TOA)

(can be reset depending on pobs and upwell)

b) rPressStart = prof.spres

(can be reset depending on pobs and upwell)

The surface temperature and satellite view angle are straightforward

c) rTBdy = 2.96

d) rTSurf = prof.stemp

e) rAngle = abs(prof.satang)

UMBC 80

DRAFT kCARTA Version 1.11,1.12,1.14

f) rHeight = prof.zobs (in meters!!!! if prof.zobs > 0)

= -1 o/w

Background thermal is alsways turned on (iaKThermal(iC) = 0)

At least one data point is required in prof.efreq, prof.emis (corresponding

to a constant emissivity); two or more points correspond to a spectrally

varying emissivity

g) iaKThermal(iC) = 0

raKThermalAngle(iC) = -1.0

iakThermalJacob(iC) = 1

h) iaSetEms(iC) = prof.nemis

DO i=1,iaSetEms(iC)

r1 = prof.efreq(i)

rEms = prof.emis(i)

END DO

The sun is turned ON or OFF depending on the value of prof.solzen

At least one data point is required in prof.rfreq, prof.rho (corresponding

to a constant emissivity); two or more points correspond to a spectrally

varying emissivity. O/W a sun reflectivity of (1-emiss)/pi is used

i) rakSolarAngle(iC) = prof.sunang

IF (prof.sunang >= 0.0) & (prof.sunang <= 90.0)) THEN

iakSolar(iC) = +1

ELSE

iakSolar(iC) = -1

END IF

j) caKSolarRefl(iC) = ’Dummy’ which gives

iaSetSolarRefl(iC) = prof.nrho

DO i=1,iaSetSolarRefl(iC)

r1 = prof.rfreq(i)

rRefl = prof.rho(i)

END DO

OR

j) caKSolarRefl(iC) = ’NONESPECIFIED’ which gives

iaSetSolarRefl(iC) = prof.nemis

UMBC 81

DRAFT kCARTA Version 1.11,1.12,1.14

DO i=1,iaSetSolarRefl(iC)

r1 = prof.efreq(i)

rRefl = (1-prof.emis(i))/pi

END DO

As seen above, more explanation of the setting of the atmosphere start/stop pres-
sures is needed. Recall the RTP file has the lowest and highest profile pressures
(corresponding to highest and lowest altitudes), pLow and pHigh

• A first cut is to assume a downlooking instrument at TOA (upwelling radiation),
and so the code sets upwell = +1, rPressStop = 0.0, rPressStart = prof.spres,
observation pressure pobs = 0.0

• Then the code checks the value of prof.pobs :
If prof.obs ≥ 0, then the observation pressure is checked to ensure that it lies
between plow ≤ pobs ≤ phigh
If prof.obs ≤ 0, then the observation pressure is still 0.0

• Then the code checks the value of prof.upwell :
If prof.upwell = 1, then upwell = prof.upwell (downlook instr)
If prof.upwell = 2, then upwell = prof.upwell (uplook instr)
If prof.upwellO/W , then upwell = 1 (downlook instr)

• Now that the code has set the radiation direction (upwell) and pbservation
pressure (pobs), it can set the start/stop pressures correctly
If upwell = 1, it sets rPressStart = prof.spres, rPressStop = pobs and the
code requires rPressStart ≥ rPressStop, or it halts
If upwell = 2, it sets rPressStart = pobs, rPressStop = prof.spres and the
code requires rPressStart ≤ rPressStop, or it halts

14.7.4 Fractional Layers

Depending on the user requirements, such as surface pressure or position of a down-
ward looking instrument, the start and stop pressures can define layers that are frac-
tional. Thus for example, we could have the following namelist initializations for this
section :

UMBC 82

DRAFT kCARTA Version 1.11,1.12,1.14

iaMPSetForRad(1) = 1
raPressStart(1) = 1000.0
raPressStop(1) = 40.0
raTspace(1) = 2.7
raTsurf(1) = 303.34
raSatAngle(1) = 0.0
raSatHeight(1) = -1.0
iakSolar(1) = -1
rakSolarAngle(1) = -1.0
cakSolarRefl(1) = ’NONEDEFINED’
rakSolarRefl(1) = -1.0
iakThermal(1) = 0
rakThermalAngle(1) = -1.0
rakThermalJacob(1) = 1
caEmissivity(1) = ’emiss.dat’
raSetEmissivity(1) = -1

iaMPSetForRad(2) = 2
raPressStart(2) = 0.0
raPressStop(2) = 1000.0
raTspace(2) = 2.7.0
raTsurf(2) = 303.34
raSatAngle(2) = 10.0
raSatHeight(2) = 705.0
iakSolar(2) = 1
rakSolarAngle(2) = 0.0
cakSolarRefl(2) = ’dummysun’
rakSolarRefl(1) = -1.0
iakThermal(2) = -1
rakThermalAngle(2) = 35.0
rakThermalJacob(2) = 1
caEmissivity(2) = ’dummy’
raSetEmissivity(2) = 0.85

Assume we are using the 100 original AIRS layers in this discussion. The above
defines instruments in two atmospheres. The first atmosphere has a downward looking
instrument, with the radiating atmosphere defined between pressures 1000.0 and 40.0,

UMBC 83

DRAFT kCARTA Version 1.11,1.12,1.14

with the first kProfLayer mixed paths being used. This corresponds to roughly layers
4 to 68. However, only the top one third of layer 4 is included (due to the position
of the surface). Similarly layer 68 has a fractional weight of 0.2 (only the bottom
2 tenths of the layer is included, due to the position of the instrument flying within
the layer). Note that if the program is asked to include the solar and background
thermal contributions, then it will use layers kProfLayer downto 4 in the computation
of solar/thermal incident at the surface, and then revert back to atmosphere from
layers 4 to 68.

From the second line, solar radiation is turned off. However, the fast diffusive
approximation is turned on, and if Jacobians are to be computed, the contribution of
background thermal is included. The last−1.000 indicates that the effects of curvature
of the earth on the local satellite viewing angle, are not to be included (in any case,
the satellite view angle is 0.0). From the third line, file ../OUTPUT/emissivity.dat
contains the the data for the emissivity.

The second atmosphere has a upward looking instrument, with the radiating at-
mosphere defined between layers 200 and 110. (the integer “2” indicates that the
mixed paths 101-200 should be used—the pressures correspond to the 10th and 100
th in this set). However, layer 110 has a fractional weight of 0.6 (due to the position
of the surface). As the start pressure was input as 0.0 mb, it is reset to 0.005 mb (top
of 100th layer). The highest layer (200) thus has a fractional weight of 1.0 as we are
looking all the way into space. The sun is filling the FOV. The instrument is pointed
in a direction of 10 degrees with respect to the vertical, and the program has been
asked to include the effects of curvature on the viewing angle. The next two lines
contain settings that are read in and ignored (the emissivity is set to 0.85 across the
entire frequency range, even though it is ignored in the forward model calculations).

14.8 nm output (mandatory)

This section requires the user to specify the output filename. Note the program will
not overwrite an existing file. Additionally, this section requires the user to specify
which paths/mixed paths/radiances are to be output (for ALL wavenumbers). Note
that if the user specifies the same output option more than once, the program will try
to merge the information together.

The information required in this section is of the form output file name followed
by output specification part, as follows

caComment =
caLogFile =

UMBC 84

DRAFT kCARTA Version 1.11,1.12,1.14

iaPrinter(1) =
iaGPMPAtm(1) =
iaNp(1) =
iaaOp(1,:) =
raaOp(1,:) =

iaPrinter(2) =
iaGPMPAtm(2) =
iaNp(2) =
iaaOp(2,:) =
raaOp(2,:) =

...

OR

iaPrinter = i1,i2, ...
iaGPMPAtm = i1,i2, ...
iaNp = i1,i2, ...
iaaOp =
raaOp =

...

caComment is a 80 character string that the user can use to enter a short one line
summary of the kCARTA run eg ’Cirrus cloud run’ or ’Gas breakouts for Fast Models’
or ’Uplook instrument’ etc. If this variable is not set, it is defaulted to ’KCARTA run’

caLogFile is a 80 character string that the user can use to specify the name of the log
file that kCARTA produces. This log file details any warnings, and pretty much tells
the user hoiw kCARTA interpreted the directives of the namelist file. If this variable
is not set, it is defaulted to ’warning.msg’
One of three possibilities (iaPrinter) can be output by the program :

Table 9: Output options.

1 specify which gas path spectra to output
2 specify which mixed path spectra to output
3 specify atmospheres/pressures to output radiances at

UMBC 85

DRAFT kCARTA Version 1.11,1.12,1.14

If iaPrinter(iI) is not one of 1,2 or 3, the program aborts

Because of the structure of the algorithm, the output options have to be listed in
order ie Gas paths followed by Mixed paths followed by radiances. If the user specifies
eg radiances to be output, followed by path spectra, the code will halt immediately
after parsing in the driver namelist file. WARNING : At present, both DISORT
and RTSPEC can only output radiances at pressure level boundaries. If arbitrary
pressures are specified, they are rounded up or down to the nearest boundary.
Depending on what output option was chosen (iaPrinter(iI) = 1,2 or 3), the user then
has to to specify

iaGPMPAtm and iaNp

where iaGPMPAtm(iI) = gas id/mixedpath set/atmosphere number
and iaNp(iI) = number of paths/mixed paths/radiances to output

As kCARTA outputs the lists of paths and MPs to be output, it checks to make
sure that the same path/MP layer does not occur more than once. Similarly, it checks
the number of atmospheres read in from RADNCE against the highest atmosphere
number read in from OUTPUT to make sure that information from an an invalid
atmosphere will not be expected to be output. It also makes sure that the radiances
output per atmosphere is less than or equal to minimum(kProfLayer,actual number
of radiating layers) output per atmosphere. If these criteria are violated, the program
informs the user and halts.

Note that when the user specifies the pressures at which radiances are to be
output, he/she must ensure the pressures lie within those that define the atmosphere,
else the program will halt. Again, as in the nm radnce section, if the user inputs
pressures greater than 1100.0 mb or less than 0.005 mb, they are reset to 1100.0
and 0.005 mb respectively. In addition, depending on the specifics of the atmosphere,
the highest/lowest pressures at which radiances are output are set according to those
specified by the boundaries.

The next three subsection explains the requirements for a path, mixed path and
radiance outputs.

14.8.1 Output Gas Paths (Option 1 : iaPrinter(iI)= 1)

For this iaPrinter(iI) (= 1), the user needs to specify iG (gas IDs) and list of gas
paths to output. The program expects one of the following four combinations of

UMBC 86

DRAFT kCARTA Version 1.11,1.12,1.14

iaGPMPAtm(iI) iaNp(iI) :

Table 10: Output options for iaPrinter(iI)=1

iaGPMPAtm iaNP DESCRIPTION

-1 -1 all paths/mixed paths output

iG -1 for gasID=iG output all kProfLayers layers

-1 iN for all gases iG=1,iNumgases, output spectra in
the iN layers specified in list on next line

iG iN for gas iG, output spectra in the iN layers specified
in list on the next line

If iaNP(iI) is not equal to -1, then the next line should contain a list of the iaNP
paths to be output

Note that iPrinter = 1 can be repeated more than once—the instructions found
each time it finds iPrinter = 1 are simply merged together with the previous instruc-
tions. Thus for instance

iaPrinter(1) = 1
iaGPMPAtm(1) = 1
iaNp(1) = -1
iaPrinter(2) = 1
iaGPMPAtm(2) = 101
iaNp(2) = -1
iaPrinter(3) = 1
iaGPMPAtm(3) = 102
iaNp(3) = -1
iaPrinter(4) = 1
iaGPMPAtm(4) = 2
iaNp(4) = -1

are perfectly valid, as the program will output the spectra for all kProfLayers layers
for Gas ID’s 1,101, 102 (water basement, water self, water foreign) and 2 (CO2)

WARNING : kCARTA has been structured so that the total water optical depth is
broken into that of three components, according to the CKD definitions : gasID =
1 being the without basement lorentz term, gasID = 101 being the self continuum

UMBC 87

DRAFT kCARTA Version 1.11,1.12,1.14

and gasID = 102 being the foreign continuum. An unsuspecting user might only turn
gasID = 1 on, and be puzzled why the water optical depth seen in the output files
seems small (eg in the 10 um window region, the main contribution is due to the self
continuum). Thus the user should ask for gases 1,101 and 102 to be output, as has
been done in the example above!!! See Figure 5, which illustrates this for the tropical
(wet) profile. One can see that in between the lines (eg at 894 cm, the water without
basement (blue) and water foreign (red) have a negligible contribution; the water self
(green) contributes the most to the overall optical depth (cyan). Conversely, Figure
??watersaw) for the sub artic winter (dry) profile will demonstrate that only about
1/2 to 2/3 of the optical depth in the same region is due to water(self); other gases
will have an appreciable contribution to the total optical depth

Example : Suppose 3 gases have been found in nm molgas or nm xscgas and
400 mixed paths defined using nm weight and 2 atmospheres defined in nm radnce.
The following are examples of what output paths the user can specify

iaPrinter(1) = 1
iaGPMPAtm(1) = 1
iaNp(1) = -1

will list ALL spectra for ALL gases. For each 10000 point chunk, the kProfLayers
layers of gas 1, kProfLayers layers of gas 2 and kProfLayers layers of gas 3 will be
output (10000 pts per layer).

iaPrinter(1) = 1
iaGPMPAtm(1) = 1
iaNp(1) = 2
iaaOp(1,1)=10
iaaOp(1,2)=20

iaPrinter(2) = 1
iaGPMPAtm(2) = 2
iaNp(1) = 1
iaaOp(2,1)=30

iaPrinter(3) = 1
iaGPMPAtm(3) = 3
iaNp(3) = 2

UMBC 88

DRAFT kCARTA Version 1.11,1.12,1.14

892 894 896 898 900 902 904 906

0

0.5

1

1.5

2

Tropical Profile : Ground to Space Optical Depths

Wavenumber cm−1

O
pt

ic
al

 D
ep

th

water
self
foreign
all gases

Figure 5: Water and total optical depths in 10 um window.
UMBC 89

DRAFT kCARTA Version 1.11,1.12,1.14

890 895 900 905

0

0.05

0.1
SubArtic Winter Profile : Ground to Space Optical Depths

Wavenumber cm−1

O
pt

ic
al

 D
ep

th

water
self
foreign
all gases

Figure 6: Water and total optical depths in 10 um window.
UMBC 90

DRAFT kCARTA Version 1.11,1.12,1.14

iaaOp(3,1)=60
iaaOp(3,2)=70

• will list layers 10,20 of gas ID 1

• will list layer 30 of gas ID 2

• will list layers 60,70 of gas ID 3

(if for instance, GAS ID 2 were not defined in MOLGAS/XSCGAS, the program will
halt)

iaPrinter(1) = 1
iaGPMPAtm(1) = -1
iaNp(1) = 5
iaaOp(1,1)=1
iaaOp(1,2)=2
iaaOp(1,3)=3
iaaOp(1,4)=4
iaaOp(1,5)=5

will output the spectra for the 5 lowest layers for ALL gases.

iaPrinter(1) = 1
iaGPMPAtm(1) = 2
iaNp(1) = -1

will output the spectra for ALL kProfLayers layers for GAS ID = 2

Note that for options 1 these outputs can be layer to space cumulative, layer to
space transmittances, layer or layer transmittances, depending on the relevant setting
of parameter 1 kLayer2Sp in nm params

14.8.2 Output mixed paths (Option 2 : IaPrinter(iI)=2)

For this iOutputOption (= 2), the user needs to specify iSet (mixed path set) and
list of mixed paths to output. The program expects one of the following four combi-
nations of iWhich iNp :

UMBC 91

DRAFT kCARTA Version 1.11,1.12,1.14

Table 11: Output options for iaPrinter(iI)=2

iaGPMPAtm iaNP DESCRIPTION

-1 -1 all mixed paths output

iSet -1 for mixed path set = iSet, output all kProfLayers
layers

-1 iN for all mixed path sets iMP=1,iSetNum, output
spectra in the iN layers specified in list on next
line

iSet iN for mixed path set iSet, output spectra in the iN
layers specified in list on the next line

If iaNP(iI) is not equal to -1, then the next line should contain a list of the iaNP(iI)
mixedpaths to be output

Note that iaPrinter(iI) = 2 can be repeated more than once—the instructions
found each time it finds iaPrinter(iI) = 2 are simply merged together with the previous
instructions. Thus for instance

iaPrinter(1) = 2
iaGPMPAtm(1) = 1
iaNp(1) = -1
iaPrinter(1) = 2
iaGPMPAtm(1) = 2
iaNp(1) = -1

are perfectly valid, as the program will output the spectra for all kProfLayers layers
for mixed path sets 1 and 2

Example : Suppose 3 gases have been found in nm molgas and nm xscgas and
4 mixed path sets (or 400 mixed paths) defined using nm weight and 2 atmospheres
defined in nm radnce. The following are examples of what output mixed paths the
user can specify.

iaPrinter(1) = 2
iaGPMPAtm(1) = -1
iaNp(1) = -1

will list ALL spectra for ALL mixed path sets. For each 10000 point chunk, the
kProfLayers layers of set 1, kProfLayers layers of set 2, kProfLayers layers of set 3 and

UMBC 92

DRAFT kCARTA Version 1.11,1.12,1.14

kProfLayers layers of set 4 will be output (10000 pts per layer).

iaPrinter(1) = 2
iaGPMPAtm(1) = 1
iaNp(1) = 2
iaaOp(1,1) = 10
iaaOp(1,2) = 20

iaPrinter(2) = 2
iaGPMPAtm(2) = 2
iaNp(2) = 1
iaaOp(2,1) = 30

iaPrinter(3) = 2
iaGPMPAtm(3) = 3
iaNp(3) = 2
iaaOp(3,1) = 60
iaaOp(3,2) = 70

• will list layers 10,20 of MP set 1

• will list layer 30 of MP set 2

• will list layers 60,70 of MP set 3

(if for instance, the user tried to output something from MP set 5, the program will
halt as this set was undefined)

iaPrinter(1) = 2
iaGPMPAtm(1) = -1
iaNp(1) = 5
iaaOp(1,1) = 1
iaaOp(1,2) = 2
iaaOp(1,3) = 3
iaaOp(1,4) = 4
iaaOp(1,5) = 5

will output the spectra for the 5 lowest layers for ALL four mixed path sets.

UMBC 93

DRAFT kCARTA Version 1.11,1.12,1.14

iaPrinter(1) = 2
iaGPMPAtm(1) = 2
iaNp(1) = -1

will output the spectra for ALL kProfLayers layers for mixed path set number 2

iaPrinter(1) = 2
iaGPMPAtm(1) = -1
iaNp(1) = -1

will list all 400 mixed path spectra

Note that for option 2, these outputs can be layer to space cumulative, layer to
space transmittances, layer or layer transmittances, depending on the relevant setting
of parameter 1 kLayer2Sp in nm params

14.8.3 Output radiances (Option 3 : iaPrinter(iI) = 3)

For iOutputOption = 3, the user needs to specify iAtm (atmosphere number). For this
option, the program expects one of the following four combinations of iaGPMPAtm
iaNp :

Table 12: Output options for iOutputOption=3

iaGPMPAtm iaNp DESCRIPTION

-1 -1 radiances for all layers in all atmospheres output

iAtm -1 for atmosphere iAtm, output radiances at all layers
(bottom or top, depending on up or down looking
instrument)

-1 iN for all atmospheres, output radiances at the iN
pressures specified in the next line

iAtm iN for atmosphere iAtm, output radiances at the iN
pressures specified in the next line

If iaNP(iI) is not equal to -1, then the next line should contain a list of the iNP
pressures at which to output radiances.

As in the case of concatenating paths/mixed paths output, for a specific radiating

UMBC 94

DRAFT kCARTA Version 1.11,1.12,1.14

atmosphere, if iOutputOption=3 is repeated more than once, the program tries to
merge the pressures together, as long as no more than kProfLayers different pressures
found for any one of the individual atmospheres. In addition , if iAtm < 0, as the
program keeps on adding each atmosphere as a new print option, the program will
halt if the total number of print options exceeds kMaxPrint. Thus

iaPrinter(1) = 3
iaGPMPAtm(1) = 1
iaNp(1) = 1
raaOp(1,1) = 0.01
iaPrinter(1) = 3
iaGPMPAtm(1) = 1
iaNp(1) = 1
raaOp(1,1) = 0.10

is allowed. However if kMaxPrint=5 and there are 6 atmospheres defined in nm radnce,
then

iaPrinter(1) = 3
iaGPMPAtm(1) = -1
iaNp(1) = -1

will cause the program to stop.
Example : Suppose as in the above example, 3 gases have been found in nm molgas

and nm xscgas, 400 mixed paths defined using nm weight and 2 atmospheres de-
fined in nm radnce (with the start/stop pressures being such that the first one has
90 layers and the other has 100 layers). The following are examples of what output
radiances the user can specify

iaPrinter(1) = 3
iaGPMPAtm(1) = -1
iaNp(1) = -1

will list the radiances at the top of each layer (or bottom if the radiation traveling
down to instrument on ground), for each atmosphere. Thus there will be 90 radiances
from atmosphere 1, and 100 from atmosphere 2

iaPrinter(1) = 3
iaGPMPAtm(1) = 2

UMBC 95

DRAFT kCARTA Version 1.11,1.12,1.14

iaNp(1) = -1

will list the radiances at the top of each layer (or bottom if the radiation traveling
down to instrument on ground), for atmosphere number 2. Thus there 100 radiances
from atmosphere 2

iaPrinter(1) = 3
iaGPMPAtm(1) = -1
iaNp(1) = 2
raaOp(1,1) = 10.0
raaOp(1,2) = 0.01

will list two radiances for each atmosphere. These radiances are computed at pressures
10.0 and 0.01 mb (if one or both the atmospheres does not contain these pressures,
the program will halt)

iaPrinter(1) = 3
iaGPMPAtm(1) = 2
iaNp(1) = 3
raaOp(1,1) = 700.0
raaOp(1,2) = 10.0
raaOp(1,3) = 0.01

will list three radiances for atmosphere 2. These radiances are computed at pressures
700.0, 10.0 and 0.01 mb (if the atmosphere does not contain these pressures, the
program will reset the pressures so that they are within the max/min specified by the
user in nm radnce)

Note that the program takes into account the pressure layering, and the pressures
where the radiance is to be output. As an example, suppose that the top pressure layer
is from 10 mb to 0.005 mb , and the aircraft carrying the downlooking instrument
flies at 5.0 mb. For downlooking instruments, the program uses the lower portion of
the layer when doing its fractional layering computations, except for the bottommost
layer (see below). So in this example, only fraction rF=(10-5)/(10-0.005) 1/2 =
rFracTop of the top layer is used.

////////////// use this LOWER portion

UMBC 96

DRAFT kCARTA Version 1.11,1.12,1.14

If a print option for this atmosphere is
iaPrinter(1) = 3

iaGPMPAtm(1) = 1
iaNp(1) = 1
raaOp(1,1) = 00.0

implying that one radiance, at aircraft height, is to be output, then the program will
compute the output radiance as follows :
the radiance immediately below this layer is the incident radiation. A fraction 0.5
(=rFracTop) of the layer is to be used in the radiative transfer. The program inter-
polates the vertical temperatures, to find the temperature of this fractional layer, and
then uses rFracTop of the computed absorption coefficients, to find the absorption in
this fractional layer. These are then used, together with the radiation at the bottom
of the layer, to compute the radiance at the instrument.

If a print option for this atmosphere is
iaPrinter(1) = 3

iaGPMPAtm(1) = 1
iaNp(1) = 1
raaOp(1,1) = 7.5

(ie the user wants a radiance output at pressure 7.5 mb), the program will compute
the output radiance as follows :
the radiance immediately below this layer is the incident radiation. A fraction 0.25 (=
(10-7)/(10-0.005)) of the layer is to be used in the radiative transfer. The program
interpolates the vertical temperatures, to find the temperature of this fractional layer,
and then uses rFrac of the computed absorption coefficients, to find the absorption in
this fractional layer. These are then used, together with the radiation at the bottom
of the layer, to compute the radiance at the instrument.

As mentioned immediately above, the program is very careful about the bottom-
most layer, and will use the top fraction of this layer (between the ground and specified
pressure level). For example, if the bottom layer is from 1000 mb to 900 mb, and
the surface pressure is 950 mb, then only fraction rF=(950-900)/(1000-900) 1/2 =
rFracBot of the bottom layer is used

////////////// use this UPPER portion

//////////////

UMBC 97

DRAFT kCARTA Version 1.11,1.12,1.14

If a print option for this atmosphere is
iaPrinter(1) = 3

iaGPMPAtm(1) = 1
iaNp(1) = 1
raaOp(1,1) = 1000.0

this means that the radiation at the surface is output :
raRad(vu) = raEms(vu) * ttorad(Tsurf,vu) + thermal(vu) + solar(vu)

If a print option for this atmosphere is iaPrinter(1) = 3

iaGPMPAtm(1) = 1
iaNp(1) = 1
raaOp(1,1) = 925

implying that one radiance, at 925 mb, is to be output, then the fraction of the
bottom layer that will be used is rFracBot - (925-900)/(1000-9000) = 0.5 - 0.25 =
0.25. The program will compute the output radiance as follows :
the radiance from the surface is used as the incident radiation. A fraction 0.25 of
the layer is to be used in the radiative transfer. The program interpolates the vertical
temperatures, to find the temperature of this fractional layer, and then uses rFrac of
the computed absorption coefficients, to find the absorption in this fractional layer.
These are then used, together with the surface radiation, to compute the radiance at
the instrument.

If the user specifies radiances to be output at EACH layer

iaPrinter(1) = 3
iaGPMPAtm(1) = 1
iaNp(1) = -1

then for each layer, the radiation at uppermost part of the layer is output
ie bottom layer : surface to top of layer –¿ output rad
next layer : bottom of layer to top of layer –¿ output rad
....
top layer : bottom of layer to aircraft posn –¿ output rad

The same considerations would be applied for a uplooking instrument.

UMBC 98

DRAFT kCARTA Version 1.11,1.12,1.14

Note that if you use the clear sky radiative transfer code, you can output radiances
at as many levels as you desire; however if you turn on the scattering code, at present
you can only output the radiance at the TOA (for downlook instrument) or at surface
(for uplook instrument); if some other option is found in the namelist, the code will
stop.

Also note how if iaPrinter(iI) = 1,2 we had to specify the gas paths or mixed paths
in iaaOp(i,j), but if iaPrinter(iI) = 3 we had to specify the pressure levels in raaOp(i,j)

14.9 nm jacobn (optional)

This keyword turns on/off Jacobian calculations. The user can either ask to output
the first kMaxDQ gases, or give a list containing which gas IDs he wants to output
gas amount Jacobians for, or turn off jacobian computations :

iJacob = -1
OR

iJacob = n
g1 g2 ... gn

OR
iJacob = 0

IfiJacob = 0, then no Jacobian computations are done.
Depending on the setting of parameter kJacobOutput in the PARAMS section, the

jacobians that are output could be the raw jacobians (dr/ds), the brightness tempera-
ture jacobians (d(BT)/ds) or the scaled brightness temperature jacobians (d(BT)/ds
×δ s) where s is the variable with respect to which the jacobian is being computed
(gas amount, temperature or surface parameter) (kJacobOutput = −1, 0, 1).

In addition, depending on the setting of parameter kTempJac in the PARAMS sec-
tion, the temperature Jacobian could be computed using the temperature dependence
of only the planck terms, the transmission terms or both (kTempJac = −2,−1, 0)

For a downlooking instrument, the code will output gas jacobians for all gases
found in the list in the JACOBN section, temperature jacobians, weighting functions,
and four surface jacobians : the radiance change with respect to surface temperature,
surface emissivity, thermal background and solar background.

For an uplooking instrument, the code will output gas jacobians for all gases found
in the list in the JACOBN section, temperature jacobians, weighting functions. Since
surface terms are meaningless here, four sets of zeros are also output.

UMBC 99

DRAFT kCARTA Version 1.11,1.12,1.14

If the user wants kCARTA to do scattering computations, then jacobian compu-
tations can be done, by assuming that the cloud (or scattering volume) only has an
abosprptive component. If the user imports spectra for some gases from some line by
line code, no jacobian computations can be done as kCARTA cannot “perturb” the
gases in temperature.

WARNING : kCARTA has been structured so that the total water optical depth
is broken into that of three components, according to the CKD definitions : gasID =
1 being the without basement lorentz term, gasID = 101 being the self continuum
and gasID = 102 being the foreign continuum. An unsuspecting user might only
turn gasID = 1 on, and be puzzled why the water jacobians seen in the output files
seems small (eg in the 10 um window region, the main contribution is due to the self
continuum). Thus the user should ask for gases 1,101 and 102 to be output!!!!

14.10 nm nonlte (optional)

The default behaviour of kCARTA is to assume the entire atmosphere is in local
thermodynamic equilibrium. This assumption is used in compiling the kCompressed
Database using our UMBC-LBL code. However, AIRS observations, and indeed ob-
servations by many limb viewers, indicate that some molecules are not in LTE in the
upper layers of the atmosphere. In particular, the 4 um band of CO2 is significantly
in NonLTE above 60 km, during daytime.

To account for this, we have implemented a NonLTE capability into kCARTA,
optimized and tested for the 4 um CO2 bands. However, since the line shapes and
planck function modifiers need to be computed on the fly, for the many CO2 lines in
this region of the spectrum, the code is significantly slowed down!!!

In addition, to simplify the computations, we mainly use Cousin chi functions in-
stead of line mixing in this region. However, for the R branch of the strong Σ − Σ
band, in the important temperature sounding region (2380 to 2430 cm−1), the code
does a first order linemixing times an appropriate “chi” function. This should not
really affect the results too much, as NLTE is in the higher parts of the atmosphere
(stratopause), mininising the effects of linemixing and thereby rendering the Cousin
lineshape as “good enough.” In the lower part of the atmosphere (tropopause), pres-
sures are high enough to warrant a linemixing lineshape; in this region the atmosphere
is in LTE, and kCARTA essentially uses its default (linemix) database here.

The code works as follows. It first uncompresses the optical depths for all layers, for
the gas in question (ie it assumes all layers are in LTE). It then does a LBL computation
for the upper layers of the atmosphere, using parameters and data supplied below.

UMBC 100

DRAFT kCARTA Version 1.11,1.12,1.14

The information required in this section is of the following form
iNumNLTEGases =

iNLTE SlowORFast =
iaNLTEGasID(1..N) =
raLTEStrength(1..N) =
raNLTEstart(1..N) =
iaNLTEChunks(1..M) =
iaaNLTEChunks(1..N,1..M) =
caaStrongLines(1..N) =
caaUpperMixRatio(1..N) =
caWeakCO2Path =
iaNLTEBands(1..N) =
caaNLTETemp(1..N) =
caaNLTEBands(1..N,1..P) =

iNLTESlowORFast tells the code whether to use the slow accurate LBL model
(+1) or regression coefficients used by the fast model (-1). If you use the Fast
Version (-1), then the only namelist parameters you need to set are iNumNLTE-
Gases,iNLTE SlowORFast,iaNLTEGasID(),iaNLTEChunks(a), iaaNLTEChunks(a,b)
iNumNLTEGases tells the code the number of gases that are in NLTE. If NLTE-
Gases = -1, then all gases are in LTE (no gas in NLTE). The code uses the defualt
kCompressed Database for all gases.

If NLTEGases ¿ 0, then one or more gases are in NLTE; all other gases are in
LTE, and the code uses the default kCompressed Database for these gases; for the
N gases that are in NLTE, the code will perform line by line computations based on
information specified further in this section.
iaNLTEGasID(1..N) gives the HITRAN gas IDs of the N gases in NLTE
iSetBloat tells code whether to use default (-1) 0.0025 cm−1 spacing or to use bloted
(+1) 0.0005 cm−1 resolution.
If iNLTE SlowORFast = +1, this is automatically (re)set to -1
iDoUpperAtmNLTE tells code whether to do NLTE calcs upto 80 km (default (-1)
or upto 120 km (+1)
If iNLTE SlowORFast = +1, this is automatically (re)set to -1
raNLTEstart(1..N) tells for each gas in NLTE, at which height (in km) to start the
NLTE computations. This height information is turned into the relevant layer; for all
layers below this, the code uses the optical depths from the kCompressed Database.
raLTEStrength(1..N) is akin to the “weight” section; this tells the code the multi-

UMBC 101

DRAFT kCARTA Version 1.11,1.12,1.14

plier for the spectral computations performed by the code. Obviously this parameter
will usually be 1.0 for almost all cases.
You can be very mischievous and use a different database for CO2 here!!!!!
If gasID == 2, raLTEStrength(X) ¡ 0 then kCARTA will go ahead and say, aha,
you do not want NLTE but you simply want to substitute the LINEMIX compressed
database optical depths for eg COUSIN compressed database optical depths. So
kCARTA will simply substitute the optical depths of the upper layers with data from
kCousin CO2Path. So if you cleverly set the value of raNonLTEStart(X) = -1400,
then all layers will be substituted, not just the upper layers!!!!! Devilish, eh?. A nice
parameter to use for raLTEStrength(X) in this case is -1.1212, which is 370/330 ppmv
used in the newer linemix database vs that used in the older Cousin database
iaNLTEChunks(1..N) tells for which chunks the above gases are in NLTE
iaaNLTEChunks(1..N, 1..M) for each of the N gases in NLTE, we now know how
many chunks are in NLTE. iaaNLTEChunks specifies these chunks.
caaUpperMixRatio(1..N) tells the code where the stratosphere/ mesosphere mixing
ratios can be found. Remember the default kCARTA database extends from 0 to 80
km, while NLTE is important between about 40-120 km; so kCARTA can compute
optical depths and Planck modifiers above the standard database, as long as it knows
the ppmvs! Right now it scales the MR read in from this file, to 370 ppmv at bottom
caaStrongLines(1..N) for each of the N gases in NLTE, we now know how many
chunks are in NLTE. The gas molecules have many lines/bands; from caWeakCO2Path
there are the weak background lines, and also there are strong lines in bands. Some
bands are in LTE while others are in NLTE. caaStrongLines is a file that specifies all
the bands for the “strong” lines that could be in LTE or NLTE. Depending on what
bands are specified to be in NLTE in caaaNLTEBands(1..N, 1..P), an XOR is
done with the bands in caaStrongLines to compute the optical depth contribution
due to strong bands in LTE (the NLTE lines will have their optical depths computed
separately). The files listed in this MUST have the FULL path and name
The files listed must agree with those listed by appending caStrongLineParams in
the “NLTEBandMapper” subroutine, else the code gets very perplexed
iaNLTEBands(1..N) tells for each gas, how many bands are in NLTE
caaaNLTEBands(1..N, 1..P) for each of the N gases in NLTE, give the igasID,iISO,iUSGQ
numbers so that kCARTA maps these partams to a file that has the weak HITRAN
line parameters (such as line centers, broadening coefficients etc). The lineshapes for
these strong lines will be Voigt * Cousin if the gas is CO2; else they will just be Voigt
caaNLTETemp(1..N) for each of the N gases in NLTE, give the file that has the
NONLTE temperatures and vibrational partition function terms, in GENLN2 style. See

UMBC 102

DRAFT kCARTA Version 1.11,1.12,1.14

the f90 programs supplied by M. Lopez-Puertas and B. Funke in KCARTA/SRCv1.12/NONLTE2/sergio/VIBTEMPS Puertas/ORIGCODE
as well as
/KCARTA/SRCv1.12/NONLTE2/sergio/AIRSDATA NLTE VIBTEMPS Puertas/do makeVT.m
for a script that takes in an input kinetic temp profile and dumps out the NLTE tem-
perature profiles

If the user puts the name ’nlteguess’, kCARTA will use a polynomial guess of the
NLTE temps, and output the guessed profile into
caOutName VTX : this is the GENLN2 style file
caOutName VTX.sss : this is a summary of the GENLN2 style file
where “X” is the closet regression profile (of 48) to the user profile, between 800 and
25n mb (2 - 25 km). The .sss file will have 15 columns :
ii,P,Tk,[QV1,QV2,QV3,QV4],[S1,S2,S3,S4],[P1,P2],[D1,D2]
where the QV i, i = 1, 4 are the vib partition functions, the SSi,PPi,DDi are the
isotopic sigmasigma, pipi, deltadelta NLTEs.

The example below is primed for the 4 um CO2 band.

• iNumNLTEGases = +1 : says that one gas is in NLTE

• iNLTE SlowORFast = +1 : says that slow accurate LBL model

• iaNLTEGasID(1) = 2 : says the gasID of the gas is “2” (CO2)

• raNLTEstrength(1) = +1.0 : says use a weight of 1.0 for all the upper layer
optical depths computed for this gas.
Together with parameter kCousin CO2path, this lets kCARTA do cousin line-
shape computations via the following fudge : if raNLTEstrength(X) = -1.1212
and iaNLTEGasID(X) = 2, kCARTA not do NLTE but instead swaps the linemix
uncompressed spectra for cousin uncompressed spectra in the layers above that
specified by raNONLTEstart(X)
Otherwise raNLTEstrength is really not used

• raNLTEstart(1) = 45.0 : tells the code to start the NLTE computations above
45.0 km (which is about layer 90 for the standard AIRS layers)

• iaNLTEChunks(1) = 10 : says that 10 chunks are in NLTE

• iaaNLTEChunks(1,1..10) gives the 10 chunks that are in NLTE

UMBC 103

DRAFT kCARTA Version 1.11,1.12,1.14

• caaLTEWeakLines(1) gives the file that has the parameters for the weak lines
that are in LTE.

• iaNLTEBands(1) = 8 : says that for this gas, there are 8 bands in NLTE

• caaaNLTEBands(1,1..8) are strings that give the (iGasID iISO iLSGQ iUSGQ)
numbers so kCARTA finds the names of the files that contain the HITRAN
lineparameters of the vibrational bands in NLTE. Any other info in the string is
ignored; the info is then mapped onto UMBC-LBL identifiers so that kCARTA
can open the correct files containing the line paameters for the band in question.
At present only CO2 4um bands can be included.

• caaNLTETemp(1) gives the names of the file that contains the NLTE profiles,
as well as the vibrational partition functions, in GENLN2 style.

Following is a typical NLTE identifier section for the 4.3 um CO2 region. Note
how we identify the sigma-sigma, pi-pi and delta-delta lines.

iNumNLTEGases = +1

iNLTE_SlowORFast = +1

iaNLTEGasID(1) = 2

raNLTEstrength(1) = +1.0

raNLTEstart(1) = 45.0

iaNLTEChunks(1) = 10

caaNLTETemp(1) = ’/home/sergio/AIRSCO2/NONLTE/hit2350_day_profile3A’

caaLTEWeakLines(1) =’/home/sergio/AIRSCO2/NONLTE/CO2/co2_2230.dat’

iaaNLTEChunks(1,1) = 2230

iaaNLTEChunks(1,2) = 2255

iaaNLTEChunks(1,3) = 2280

iaaNLTEChunks(1,4) = 2305

iaaNLTEChunks(1,5) = 2330

iaaNLTEChunks(1,6) = 2355

iaaNLTEChunks(1,7) = 2380

iaaNLTEChunks(1,8) = 2405

iaaNLTEChunks(1,9) = 2430

iaaNLTEChunks(1,10) = 2455

UMBC 104

DRAFT kCARTA Version 1.11,1.12,1.14

iaNLTEBands(1) = 19

!!! uses strongest sigma-sigma, pi-pi, delta-delta

!!! 2350 .. 2354 = sigma-sigma

!!! 2320 .. 2322 = pi-pi

!!! 2310 .. 2312 = delta-delta

!!! GASID GASIso iLSGQ iUSGQ run7lblID

caaaNLTEBands(1,1) =’2 1 1 9 2350’

caaaNLTEBands(1,2) =’2 2 1 9 2351’

caaaNLTEBands(1,3) =’2 3 1 9 2352’

caaaNLTEBands(1,4) =’2 4 1 9 2355’

caaaNLTEBands(1,5) =’2 1 2 16 2320’

caaaNLTEBands(1,6) =’2 2 2 16 2321’

caaaNLTEBands(1,7) =’2 1 4 24 2310’

caaaNLTEBands(1,8) =’2 2 4 24 2311’

caaaNLTEBands(1,9) =’2 1 3 23 2353’

caaaNLTEBands(1,10)=’2 1 5 25 2354’

!!!these are the ones Manuel suggested adding on; some isotopes of above

caaaNLTEBands(1,11)=’2 2 3 23 2253’

caaaNLTEBands(1,12)=’2 2 5 25 2254’

!!!these are the others Manuel suggested adding on

caaaNLTEBands(1,13)=’2 1 2 15 2110’

caaaNLTEBands(1,14)=’2 1 3 25 2120’

caaaNLTEBands(1,15)=’2 1 5 23 2140’

caaaNLTEBands(1,16)=’2 1 6 36 2160’

caaaNLTEBands(1,17)=’2 1 7 37 2170’

caaaNLTEBands(1,18)=’2 1 8 38 2180’

caaaNLTEBands(1,19)=’2 3 2 16 2322’

!!!these one never seems to exist in the NLTE profiles

caaaNLTEBands(1,20)=’2 1 3 22 2150’

caaaNLTEBands(1,21)=’2 1 4 22 2130’

$end

In addition, kCARTA can output a file containing the Planck modifiers. This file
is in the same output format as the flux file. Control for turning this on/off is thru
parameter kFlux in nm param; set to -1,1,2,3 (off) or 0 (on)

Figure 7 shows a comparison plot of kCARTA vs GENLN, compared to some

UMBC 105

DRAFT kCARTA Version 1.11,1.12,1.14

actual NLTE data seen in daylight viewing conditions on the AIRS instrument. What
is plotted for AIRS, is actual NLTE dayime observations minus LTE Fast Model com-
putations. For KCARTA and GENLN2, we plot (NLTE - LTE) calculations, with the
TOA at about 85 km. The main CO2 Sigma-Sigma, Delta-Delta, Pi-Pi bands are in
NLTE while the weak background lines are in LTE.

14.11 nm scattr (optional)

If kRTP = −2,−1, 0 this means the user will be defining the atmosphere and any
scattering parameters, using the specifications stated below. If kRTP = +1 then
kCARTA will use the atmosphere and cloud definitions specified in the RTP file that
contains the profile; the documentation can be found in KLAYERS/Src/Doc.

This keyword turns on/off scattering calculations. kCARTA can interface with one
of five scattering codes, depending on the users needs.

The first is rtspec.f written by K. F. Evans of the University of Colorado at
Boulder. This code computes the scattering using one of three models : Single
Scattering(1), Eddington(2) or a Hybrid(3) combination of the first two. This code is
very fast, but it does not allow the user to include scattering by a beam.

The second is disort.f written by K. Stamnes et.al. To speed up the running of
this part of the code, kCARTA allows the user to compute the scattering using one
of three ways. These ways essentially allow the user to compute radiative transfer
on N out of the 10000 points per chunk and then interpolate onto the rest of the
wavenumber grid. The three ways differ in the way they choose the wavenumber
points to do the radiative transfer on. This code is slow, but it does allow the user to
include scattering by a beam.

The third is a twostream code that also allows for the inclusion of a solar beam.
This code has been developed here at UMBC, and is very fast.

The fourth is a languishing code (perturbative solution to Schwatzchild) and will
be implemented once Mathematica can figure out the required integrals. (it WILL
work, bloody hell!!!)

The fifth code also allows for the inclusion of a solar beam. This code is based on
the longwave parametrizations and is also very fast, and transperant enough to allow
for jacobians to be computed.

UMBC 106

DRAFT kCARTA Version 1.11,1.12,1.14

2250 2300 2350 2400 2450
−2

0

2

4

6

8

10
NLTE calcs

GENLN
data
kCARTA

Figure 7: NLTE plots : Comparison of kCARTA, GENLN to actual AIRS data.
UMBC 107

DRAFT kCARTA Version 1.11,1.12,1.14

14.11.1 kRTP = -2,-1,0

The user has to tell the code which of the above five scattering models kWhichScatterCode
to use (1 = TWOSTREAM , 2 = RTSPEC, 3 = DISORT , 4 = SIMPLE, 5 =
PCLSAM). If the user chooses RTSPEC or DISORT , then he/she has to state
which specific submodel kScatter to use (eg for RTSPEC, use Hybrid or Eddington,
for DISORT , use frequency or optical depth interpolation). The user also has to state
how many clouds iNumClouds are being defined, and then has to define the clouds.
In addition, the user has to indicate in which atmosphere a cloud should be used. If
the user expects Jacobians to be computed, the radiative transfer code uses the spec-
ified model (TWOSTREAM, RTSPEC, DISORT, SIMPLE,PCLSAM), but
always uses the PCLSAM model to compute jacobians.

For the code to interface to any of the scattewring codes, the user has to set the
number of clouds in this section to a value greater than zero. If iNclouds is less than
1, the code will not do a scattering computation.

Note that a cloud has to be built up so that it occupies adjacent pressure layers
eg it can occupy layers 12,13,14 but not 12,14,15. Also, the cloud must occupy full
layers.

Clouds that occupy completely different heights can be processed. For example
if cloud 1 is an aerosol cloud layer from KCARTA layers 4-5, and cloud 2 is a cirrus
cloud from kCARTA layers 43-46, TWOSTREAM and RTSPEC handle this by
setting a “third” cloud from layers 6-42, with IWP=0.0. DISORT would simply just
use the original two clouds, as widely separated as they are.

The information required in this section is of the following form
kWhichScatterCode =

kScatter =
kDis Pts =
kDis nstr =
iScatBinaryFile =
iNClouds =

Cloud 1 definitions
Cloud 2 definitions
...
Cloud N definitions

kWhichScatterCode = +5 for PCLSAM, +4 for SIMPLE, +3 for DISORT, +2 for

UMBC 108

DRAFT kCARTA Version 1.11,1.12,1.14

RTSPEC, +1 for TWOSTREAM . Note that all but DISORT run very fast, but
RTSPEC does NOT allow a solar beam.

• If kWhichScatterCode = +1, (use TWOSTREAM) then kSCatter tells the
code how many times to run the radiance thru the cloud, to get better values
for the incident radiation at cloud top and bottom, and hence better guesses at
radiation exiting cloud top and bottom. This parameter should be set between
1 and 3. After doing quite a few tests, the best setting of parameter kScatter,
when TWOSTREAM is used, is 1

• If kWhichScatterCode = +2, (use RTSPEC) then kScatter = -1 if the
Single Scattering model is to be used, 2 if the Eddington model is to be used,
or 3 if the hybrid model should be used. It is best to use the Hybrid model when
using RTSPEC After doing quite a few tests, the best setting of parameter
kScatter, when RTSPEC is used, is 3

• If kWhichScatterCode = +3, (use DISORT) then everything defaults to
kScatter = +1 for now, as this seems the best option for both uplooking
and downlooking instruments After doing quite a few tests, the best setting of
parameter kScatter, when DISORT is used, is 1

If kWhichScatterCode = +3, (use DISORT) then

• Everything defaults to kScatter = +1 for now, as this seems the best option
for both uplooking and downlooking instruments After doing quite a few tests,
the best setting of parameter kScatter, when DISORT is used, is 1

• kScatter = +1 means use only kDis Pts pts (equally spaced over the kMax-
Pts) to do radiative transfer, and then interpolate in wavenumber to estimate
the intensities for the rest of the wavenumber grid. It is best to use this model
for either an up or down look instrument.

If the instrument is uplooking, then a simple straightforward interpolation of the
radiance at the chosen wavenumber points, to the entire grid, is done.

If the instrument is downlooking, then a more elaborate computation is done.
First the nonscattering radiative transfer is performed at all points on the

UMBC 109

DRAFT kCARTA Version 1.11,1.12,1.14

wavenumber grid. The output radiance is then the nonscattered radiance, plus
an interpolation of scattered radiance onto the required point. Let raW ,raNS
be the entire kMaxpts = 10000 wavenumber grid, and associated clear sky
radiances. Similarly, let raX, raY be the wavenumber points at which DIS-
ORT was called, along with the computed scattered radiance. Then the correct
radiance raI(iF) at wavenumber point raW(i) is estimated to be

raI(i) = raNS(i) + δI

where δI is an interpolation in Temperature space, then converted back to a
radiance. In other words, for point raW(iF), find which wavenumber points
in raX bisect this W0 ≤ raW (iF) ≤ W1. Find the DISORT and clear sky
radiances at these bisecting points, and compute the temperature differences
between scattered and non scattered radiances, at these two points

T0 = ttorad(W0, ScatterRad(W0))− ttorad(W0, NonScatterRad(W0))

T1 = ttorad(W1, ScatterRad(W1))− ttorad(W1, NonScatterRad(W1))

Then interpolate to find the estimated correction to the non scattering temper-
ature

δT =
T1− T0

W1−W0
× (raW (iF)−W0) + T0

Add on the non scattering temperature, and change this to a radiance

Tscatter = ttorad(raW (iF), NonScatterRad(raW (iF))) + δT

Iestimate = radtot(raW (iF), Tscatter)

By doing the interpolations in temperature, we can account for the variation
of Planck radiance with wavenumber (which should then have the spectral line
dependancies in it).

• kDis Pts is the number of points tha kCARTA will compute the radiances at,
out of the 10000 points per chunk. So if this variable is set at eg 25, then
kCARTA will ask DISORT to compute the radiance only at 25 points, and
then interpolate the results onto the remaining 9975. This obvioulsy sppeds
up the code, but the user has to be careful! A low setting, such as 25, for
a downlook instrument is fine. But things get quite bad for the same setting
for an uplook instrument; a setting of 500 might be needed (but this of course
means that the code runs much more slowly!)

UMBC 110

DRAFT kCARTA Version 1.11,1.12,1.14

• kScatter = +2 means step thru kDis Pts pts that are chosen in the following
way. Find the optical depths for the layer closest to ground, and sort them from
smallest to largest. Choose the kDis Pts points that have the smallest optical
depths. Do radiative transfer on these points, and then interpolate in optical
depth to estimate the intensities for the rest of the wavenumber grid.

• kScatter = +3 means step thru kDis Pts pts that are chosen in the following
way. Find the optical depths for the layer closest to ground, and sort them
from smallest to largest. Choose the kDis Pts points that span this, equally
spaced from smallest to largest optical depth. (This should not be confused
with a correlated k method, since we do not do radiative transfer on multiple
correlated k distributions as the vertical structure of the atmosphere changes).
Do radiative transfer on these points, and then interpolate in optical depth to
estimate the intensities for the rest of the wavenumber grid.

• If kScatter = 2, 3 then for an uplook instrument, there is simply an interpola-
tion of scattered radiance in wavenumber space. In other words, the scattered
radiance is computed at discrete wavenumbers, that are chosen because of their
ordering in lowest layer optical depths. For the rest of the points in the grid, just
do a simple interpolation of the scattered computations at these chosen optical
depths, onto all the optical depths (and hence all wavenumbers) found at the
lowest layer. This method works very well for an uplook instrument, as most
of the radiance measured by the instrument depends on the layer closest to the
instrument.

• For a downlook instrument, there is a more elaborate computation done, exactly
along the lines of that for a wavenumber interpolation for the downlooking case
described earlier. However, since the wavenumber dependence of the Planck
function is quite crucial, the code proceeds as follows. First it chooses the
wavenumber points according to the sorted optical depths of the lowest layer,
as described above. It then does the DISORT radiative transfer on the chosen
points, and then non scattering radiative transfer on all points. To interpo-
late the chosen points onto the wavenumber grid, it resorts the chosen points
according to wavenumber, and interpolates these few points onto the entire
wavenumber grid, as described above for kScatter = 1. However, since the
wavenumbers chosen for the downlooking kScatter = 2, 3 cases do not neces-
sarily sample the 25cm−1 chunk adequately in wavenumber, there are noticeable
errors when compared to RTSPEC or to kScatter = 1

UMBC 111

DRAFT kCARTA Version 1.11,1.12,1.14

If kWhichScatterCode = +3, then kDis nstr tells how many streams should be
used by DISORT (2,4,8,16 ...)

If kWhichScatterCode = +3, then kDis Pts is used as described above.

iScatBinaryF ile = 1 if the scattering tables produced by sscatmie.f have been
translated to binary format, else it should be set to -1 if they are still in the original
text file format.

iNClouds is the number of clouds which are defined in this section, to be be used
with the rtspec code. If this number is less than one, than only clear sky computations
will be done.

Each of the the clouds are defined and used as follows

raExp(iI) = rE
iaCloudNumLayers(iI) = iLayers
raaPCloudTop(iI,iJ) = rPTop
raaPCloudBot(iI,iJ) = rPBot
raaaCloudParams(iI,iJ,1) = IWP
raaaCloudParams(iI,iJ,2) = dme = mean particle size
iaaScatTable(iI,iJ) = iTable
caaaScatTable(iI,iJ) = Mie FileName
caaCloudName(iI)
iaCloudNumAtm(iI) = iNatms

iaaCloudWhichAtm(iI,iJ)

The first line indicates how the IWPs will be scaled. If the cloud is “expanded” to
occupy pressure layers spanning rPTop to rPBot, then the IWPs can either be the
same in each of the layers (rE ≤ 0), or they can exponentially decrease from bottom
to top as

rIWP = rIWP0× exp(−rE∗(rPBot−rP)/(rPBot−rPTop))

where rIWP0 is the IWP specified by the user, and rP is the pressure of the current
layer.

The second line gives the (integer) number of pressure layers iLayers the cloud will

UMBC 112

DRAFT kCARTA Version 1.11,1.12,1.14

occupy. These pressure layers must correspond to the layers defined by the pressure
levels from klayers.x.

In the next few lines, the user then has to define, for each of the layers, the cloud
parameters; starting from the lowest pressure (highest layer), the user has to enter :
rPTop, rPBot : real variables defining the cloud layer top, bottom pressure
IWP : real parameter IWP/LWP in g/m2

dme : real parameter mean particle diameter (um)
iTable : integer giving scattering table number (integer)
Mie FileName : character array gives the Mie Scattering table file name

The user can then baptise the cloud with a name (in a character array). Finally
the user has to tell the code in which atmosphere(s) to use the defined cloud. This is
done in the next two lines :
iaNatms : integer that tells how many atmospheres the cloud has to be used
iaaCloudWhichAtm : integers listing these atmospheres

Note that the code automatically expands a cloud layers into multilayers spreading
across the specified pressure levels eg if a user specifies a “one layer cloud” from 250
to 200 mb, then kCARTA will expand this so that the start (top) layer is at 200 mb,
and the stop (bottom) layer is 250 mb.

So for instance the following lines define a cloud that occupies three pressure lay-
ers, and will be used in two atmospheres

kScatter = 2
iScatBinaryFile = 1
iNclouds = 1
iaCloudNumLayers(1) = 3

raExp(1) = 0.0
raaPCloudTop(1,1) = 2.0000000E+02
raaPCloudBot(1,1) = 2.5000000E+02
raaaCloudParams(1,1,1) = 5.0
raaaCloudParams(1,1,2) = 20.0
iaaScatTable(1,1) = 1
caaaScatTable(1,1) = ’cir1’

raExp(2) = 0.0

UMBC 113

DRAFT kCARTA Version 1.11,1.12,1.14

raaPCloudTop(1,2) = 2.5000000E+02
raaPCloudBot(1,2) = 3.0000000E+02
raaaCloudParams(1,2,1) = 8.0
raaaCloudParams(1,2,2) = 30.0
iaaScatTable(1,2) = 2
caaaScatTable(1,2) = ’cir2’

raExp(3) = 0.0
raaPCloudTop(1,3) = 3.0000000E+02
raaPCloudBot(1,3) = 3.5000000E+02
raaaCloudParams(1,3,1) = 10.0
raaaCloudParams(1,3,2) = 40.0
iaaScatTable(1,3) = 3
caaaScatTable(1,3) = ’cir3’

caaCloudName = ’HappyLittleCloud’
iaCloudNumAtm = 2
iaaCloudWhichAtm = 1, 2

The code automatically compares the cloud top and bottom pressures against the
start/stop pressures of the atmospheres in RADNCE; if discrepancies are found, the
code will stop running.

WARNING 1 : If one uses DISORT for a down looking instrument, with solar on,
then DISORT automatically uses a solar reflectance = albedo/π (which is the same
as that used for the reflected thermal).
However, with nonscattering kCARTA, one can specify the solar reflectance, using
parameter cakSolarRefl(i). If this is set to -1, then the results for nonscattering
kCARTA and cloudless DISORT should be the same. If this is set to a non zero
positive number, then the results for nonscattering kCARTA and cloudless DISORT
will be different.

WARNING 2 : At present, both DISORT and RTSPEC can only output a radiance
at TOA or aircraft posn (for a down look instr), or at ground level (for a uplook
instrument).

WARNING 3 : DISORT is extensively tested by its authors (Stamnes et al). How-
ever, it runs much slower than non scatter kCARTA or RTSPEC. Instead of computing
radiative transfer at all points, kCARTA skips thru its wavenumber points, and then
interpolates the results back onto the 0.0025 cm−1 grid.

UMBC 114

DRAFT kCARTA Version 1.11,1.12,1.14

For a 10000 point chunk, typical timings are 30 sec for kCARTA nonscatter (both
up and downlook)m 35-40 sec for RTSPEC (up and downlook). For DISORT, with
kDis Pts = 200, for a downlook instrument, sun on, takes about 240 secs, while for
an uplook instrument, sun on, takes about 1200 secs).
To speed up the code, the user can do one or both of the following. In the in-
put namelist file, one can reduce the number of streams used in the computation
(kDis nstr, preset to 16), or decrease the number of points at which radiances are
computed (kDis Pts, preset at 400).

WARNING 4: For a downlook instrument, iakThermal(i) is only relevant for RT-
SPEC (ie this parameter turns it off or on). DISORT will always compute the back-
ground thermal.

WARNING 5: For a downlook instrument, iakThermal(i) should be turned off when
TWOSTREAM is used, for better comparisons to DISORT

Figure 8 is a plot of the brightness temperatures for 4 cases, using the RTSPEC
code (sun off). The instrument is downlooking. Case 1 is clear sky, case 2 is cirrus
cloud at 10 km, third is water cloud at 1 km and fourth is aersol dust at ground.
Mean particle sizes of 10 um were used for all three scattering cases, while the particle
concentrations were 1.0,1.0,10.0 g/m2 respectively.

Figure 9 is a plot of the brightness temperatures for the same 4 cases, using the
TWOSTREAM code (sun on). The instrument is uplooking.

14.11.2 kRTP = +1

Since the AIRS Fast Forward Model uses a one layer version of our twostream code,
this model is automatically selected when the RTP file contains information to include
a cloud in the atmosphere. Many of the variables needed above are then automatically
set by kCARTA; only the very needed information is read in from the RTP file. Only
ONE cloud can be read in and used from the RTP file.

a) kWhichScatterCode = +1 !use TwoStream

b) kScatter = 1 !use one run of TwoStream

c) raExp(1) = 0.0

d) iScatBinaryFile = cbinORasc --> set in nm_prfile

e) iNClouds = 1

f) iaCloudNumLayers(1) = 1

g) iaaScatTable(1,1) = 1

h) caaCloudName(1) = ’RTP cloud’

i) caaaScatTable(1,1) = cfile --> set in nm_prfile

UMBC 115

DRAFT kCARTA Version 1.11,1.12,1.14

700 800 900 1000 1100 1200 1300 1400
220

230

240

250

260

270

280

290
Downlook instr : RTSPEC

Clear
Cirrus 10 km
Water 1 km
Ground aerosol

Figure 8: Scatter plots : Downlook instrument using RTSPEC

UMBC 116

DRAFT kCARTA Version 1.11,1.12,1.14

2400 2500 2600 2700 2800
200

220

240

260

280

300

320

340
Upook instr : TWOSTREM, sun on

Clear
Cirrus 10 km
Water 1 km
Ground aerosol

Figure 9: Scatter plots : Uplook instrument using TWOSTREAM

UMBC 117

DRAFT kCARTA Version 1.11,1.12,1.14

j) raaaCloudParams(1,1,1) = cngwat

k) raaaCloudParams(1,1,2) = cpsize

l) raaPCloudTop(1,1) = cprtop

m) raaPCloudBot(1,1) = cprbot

n) iaCloudNumAtm(1) = 1

o) iaaCloudWhichAtm(1,1) = 1

Note that if $kcarta.x$ is being used when RTP file is being read in, and

clouds specified, then everything is fine and the code proceeds. However if the

RTP file specifies a cloud when the basic $bkcarta.x$ is being used, then the

code will obviously halt.

14.12 nm spectra (optional)

This keyword allows the code to read in externally computed spectra, for more than
one gas. If iNumNewGases is greater than 0, Jacobians cannot be computed, as
the code has no way of perturbing the supplied spectra. The files should all be binary
unformatted files, and the information in them is specified in one of the following
paragraphs.

The information required in this section is of the following form
iNumNewGases =

iaNewGasID(iI) =
iaNewData(iI) =

iaaNewChunks(iI,1) =
iaaNewChunks(iI,2) =
iaaNewChunks(iI,3) =
caaaNewChunks(iI,1) =
caaaNewChunks(iI,2) =
caaaNewChunks(iI,3) =

...

iaNewGasIDIiI) is the HITRAN gasID of the gas that the user is supplying ex-
ternally computed absorption spectra for. iaNewData(iI) is an integer value denoting
the number of kCompressed chunks that the data will be supplied for. For each of
these new chunks, iaaNewChunks(iI, iJ) is an integer value telling the code which
kCARTA chunk the data corresponds to, while caaaNewChunks(iI, iJ) is a char-
acter array telling the code in which file the absorption spectra resides. So for example

UMBC 118

DRAFT kCARTA Version 1.11,1.12,1.14

iNumNewGases = 2
iaNewGasID(1) = 1
iaNewData(1) = 5

iaaNewChunks(1,1) = 405
iaaNewChunks(1,2) = 415
iaaNewChunks(1,3) = 425
iaaNewChunks(1,4) = 435
iaaNewChunks(1,5) = 445
caaaNewChunks(1,1) = ’TABLES/scatter405’
caaaNewChunks(1,2) = ’TABLES/scatter415’
caaaNewChunks(1,3) = ’TABLES/scatter425’
caaaNewChunks(1,4) = ’TABLES/scatter435’
caaaNewChunks(1,5) = ’TABLES/scatter445’

iaNewGasID(2) = 3
iaNewData(2) = 2

iaaNewChunks(2,1) = 1055
iaaNewChunks(2,2) = 1080
caaaNewChunks(2,1) = ’../DATA/scatter1055’
caaaNewChunks(2,2) = ’../DATA/scatter1080’

tells the code not to use the kCompressed data files for 2 gases. The gases are
GasID = 1, which has 5 new chunks of data (starting with wavenumbers 405, 415,
425, 435 and 445 cm), and GasID 3, which has 3 new chunks of data (starting with
wavenumbers 1055 and 1080 cm).

The data in each of the files has to be in the following format
header

data layer 1
data layer 2
...
data layer kProfLayer

The header info contains the following integers on one line : idgas, npts, nlay.
These are the gasID, number of wavenumber points (should equal kMaxPts=10000)
and number of layers (which should equal kProfLayer). The next line in the header
contains two reals : sfreq, fstep which are the start frequency and wavenumber step
respectively. These numbers should correspond to the corresponding kCompressed file

UMBC 119

DRAFT kCARTA Version 1.11,1.12,1.14

the data is replacing :
idgas npts nlay

sfreq fstep

After this, the actual data should be stored in layer form, as double precision
variable :

daAbsLayer1(J),J=1,kMaxPts)

daAbsLayer2(J),J=1,kMaxPts)
daAbsLayer3(J),J=1,kMaxPts)
...
daAbsLayerN(J),J=1,kMaxPts)
where as usual, layer 1 is the ground (bottommost) layer and layer kProfLayer

is the highest layer. Matlab programs umbclbl 2 kcarta.m and umbclbl 2 kcarta2.m
in the UTILITY subdirectory allows one to easily translate spectra generated (by
our MATLAB line-by-line code, run6/7.m) from a MATLAB to a f77 file format.

14.13 nm endinp (mandatory)

Once this keyword is found, the input file is closed and a check of the keywords found
is done. If one of the above 5 mandatory keywords has not been found, the program
halts. If EOF is found before this keyword is read in, the program halts.

14.14 Sample template files

As mentioned at the beginning of this section, four sample template files exist in the
subdirectory ../DATA/TemplateNML test1.nml could be used for fast forward model
development, as it only sets up and outputs mixed paths. The rest of the files set up
mixed paths, and then build atmospheres from which radiances can be computed.

15 Driver Namelist File : Important Points to

Remember

Having read the previous section, we now make a list of the some requirements the
user has to adhere to whilst writing the driver namelist file, in order to avoid some
pitfalls. One thing noticed from above is the naming convention for variables found
in the namelist file :

UMBC 120

DRAFT kCARTA Version 1.11,1.12,1.14

• variables starting with “i” are integers

• variables starting with “ia” are arrays of integers, and so need one index

• variables starting with “iaa” are arrays of arrays of integers and so need two
indices

• variables starting with “r” are reals

• variables starting with “ra” are arrays of reals, and so need one index

• variables starting with “raa” are arrays of arrays of reals and so need two indices

• variables starting with “c” are characters (not used)

• variables starting with “ca” are arrays of characters (strings) index

• variables starting with “caa” are arrays of strings and so need one index

• variables starting with “caaa” are arrays of arrays of strings and so need two
indices

15.1 General

• kcarta.x is command line driven. Driver namelist input file and binary output
file names, if not present on the command line, are automatically defaulted
to stdin and stdout. Similarly, if the program runs to completion successfully,
it exits(0) to the operating system; if it catches a proble, it exits(1) to the
operating system. See section on running the program.

• The gas ID’s that the user should use are those specified by the HITRAN
database, and are summarized in the file “gasids” in the DOC subdirectory.
Note that gasID 101, 102 are the water self and foreign continuums respec-
tively. If the kCKD parameter is set so that there is to be no continuum (kCKD
= -1) then gasIDs 101,102 should NOT be included. If the kCKD parameter is
set so that there is to be continuum (kCKD ¿= 0) then gasIDs 101,102 should
be included.

• All angles specified by the user (eg in nm radnce) are in degrees

UMBC 121

DRAFT kCARTA Version 1.11,1.12,1.14

• The namelist sections found in the user input file should follow the follow-
ing optimum order, to prevent the program from either complaining too much
or grinding to a halt, because it is too confused: PARAMS, MOLGAS, XSC-
GAS, PRFILE, WEIGHT, RADNCE, JACOBN, SPECTRA, SCATTR, OUTPUT,
ENDINP. As mentioned above, not all the above keywords have to be used in
the input namelist file

• Parameter kGasTemp (see table in nm params) is used to control the radi-
ating layer temperatures only for radiance (and jacobian) calculations. When
uncompressing and computing the gas optical depths, the individual gas path
temperatures are used.

• After reading in the driver namelist file, the program “processes” the frequencies
set from nm frqncy. If the start and stop frequencies are such that they fall
in different sets of database files, as described above, the program stops.

• When reading in sections nm molgas and, nm xscgas the program expects
to find the specified number of Gas IDs. For example, if section nm xscgas
specifies that iX = 2, then two Gas IDs should be specified. If the program
finds less than two, it will stop. However, if it finds more than two, it will ignore
the extra GasIDs, not complain and go on its way.

• The program can either assume a plane parallel atmosphere, or include effects
on the satellite viewing angle due to the curvature of the earth. At present, no
refractive effects are included in the code.

15.2 RTP file

• If kRTP = -2,-1, then the driver namelist file needs to specify, define all the
needed information, such as start and stop frequencies, profile name, atmo-
sphere, cloud etc

• If kRTP = 0, then the driver namelist file needs to specify and define all the
needed information, such as start and stop frequencies, profile name, atmo-
sphere, cloud etc. The profile is read in from an RTP file, but all the other
information in the RTP file is ignored.

• If kRTP = +1, then the driver namelist file only needs to specify and de-
fine MOLGAS, (XSCGAS)PROFLE,WEIGHT, OUTPUT . The profile

UMBC 122

DRAFT kCARTA Version 1.11,1.12,1.14

is read in from an RTP file, as are the start/stop frequencies, and the atmosphere
and cloud information. Only one atmosphere, and only one cloud in this atmo-
sphere, can be used. The TWOSTREAM scattering code is automatically
used if a cloud is specified.

15.3 Profiles and Weights

• The reference profiles, and the PTHFIL profiles, must have kProfLayers layers
for each gas. We supply a separate package, KLAY ERS. This can take in
(almost any) point profile and change it to a path averaged kProfLayers layer
profile.

• Any gas IDs read in from nm molgas and nm xscgas should be in ascending
order.

• When reading in MOLGAS/XSCGAS, the gasID’s are stored in the order they
are read in. When WEIGHT is read in, the user has control over the weightings
of the individual gases. In addition the mixed paths are numbered sequentially
in blocks of kProfLayer mixed paths, in the order they are read in.

So if 4 blocks are defined in WEIGHT, this means that after the program has
read in the weights for all four blocks, a total of 4*kProfLayer=400 mixed paths
will have been defined by the program.

Similarly, in RADFIL, the atmospheres are ordered sequentially, 1-iNatm, in the
order they are read in. However, the user can refer to any set of the declared
mixed paths (from nm weight), when building up the atmosphere

• When reading in the file specified in PRFILE, the subroutine only scans for
the GAS ID’s stored previously from MOLGAS/XSCGAS. The water continuum
is defined by parameter kCKD in nm params —all other relevant gases will
automatically have the continuum included in their abs coeffs (eg O2,N2). If
kCKD is turned on and gas IDs 101,102 are included in MOLGAS then the
water vapor profile will be used for these two gases

• One should not use the weights as a method to change the satellite viewing
angle. This is now a parameter set by the user in nm radnce . However, if
the user is not going to compute radiances with kCARTA, but only use it to
output transmittances at various angles, for example, the user could use the
nm weight section to achieve this.

UMBC 123

DRAFT kCARTA Version 1.11,1.12,1.14

15.4 Radiances and Jacobians

• the temperatures of the various layers in the atmospheres, built up using the
mixed paths, are controlled by parameter kGasTemp (in nm params). If kGasTemp
= 1 and CO2 is present, then the layer temperatures are set using the CO2
path temperatures. If one of the above conditions is false, the temperatures of
the layers are set using a weighted average over the gases.

• When defining output pressures, you cannot define more than kProfLayers out-
put pressure levels per atmosphere. If necessary, all these kProfLayers pressure
levels could be within the same layer.

• Suppose the user puts in a Jacobian file name on the command line, but does
not have a nm jacobn section in the input driver namelist file. The program
handles this by ignoring the jacobian file name.

• The temperature Jacobian involves the cumulative weighted contributions from
ALL gases. Because of memory limitations, the individual gas d/dT contribu-
tions are not stored. This means that the d/dT Jacobian is completely cor-
rect only if one atmosphere has been defined, since the d/dT contributions
of the individual gases are then accurately weighted by the information found
in nm weight. If more than one atmosphere has been defined, with different
weightings for the gases, then the code stores a d/dT matrix where the individ-
ual gas contributions have been weighted by 1.0, and uses this matrix for ALL
atmospheres.

As the program allocates enough memory to store the individual d/dq matrices
that the user specifies, this is not a problem for the gas amount d/dq Jacobians
if more than one atmosphere has been defined. The program stores a d/dq
matrix weighted by 1.0; when it loops thru the atmospheres, it uses the correct
gas weightings (from the mixing table) for the relevant atmosphere.

• Parameter 8 (ktempJac) tells the code whether it should compute the temper-
ature Jacobian using only the Planck temp dependence (-2), only the optical
depth/transmission dependence (option -1) or both (option 0 = default). If
kTempJac < 0, then the gas amount Jacobians should not be messed up, as
the code sets various Planck terms to 0. Also, the setting of kTempJac has no
effect on the temperature Jacobians of a upward looking instrument.

UMBC 124

DRAFT kCARTA Version 1.11,1.12,1.14

15.5 Output

kMaxPrint is a parameter in kcarta.param, that sets the maximum number of different
“printing jobs” that the program can handle. There are three primary print options.
Options 1 and 2 allow the user to output gas optical depths and mixed path transmit-
tances respectively, while Option 3 allows the user to output radiances for specified
atmospheres. Note the following important points

• if option 1 is found more than once, then the specific gas paths to be output
are merged together to form just one list; the program considers all this as just
one printing option

• if option 2 is found more than once, then the specific mixed paths to be output
are merged together to form just one list; the program considers all this as just
one printing option

Thus if the following were specified

iaPrinter(1) = 1
iaGPMPAtm(1) = 1
iaNp(1) = -1

iaPrinter(2) = 1
iaGPMPAtm(2) = 4
iaNp(2) = -1

iaPrinter(3) = 1
iaGPMPAtm(3) = -1
iaNp(3) = -1

first the program would decide it had to print all path spectra for gasID 1. The
program would then then decide it had to print all path spectra for gas IDs 1 and 4.
Finally the program would decide it had to print the path spectra for ALL gases. All
of this would be considered as ONE print option.

Option 3 (radiances) is special. If a specific atmosphere is found more than once,
then the output pressures are merged together to form just one list. Note that the
length of the list should always be less than kProfLayer, else the program halts. If
iNp < 0 (output radiance at the top of each pressure layer), then the program does

UMBC 125

DRAFT kCARTA Version 1.11,1.12,1.14

not allow any more radiances to be output for that atmosphere. Thus for example, if
iAtm=1 used kProfLayers pressure layers

iaPrinter(1) = 3
iaGPMPAtm(1) = 1
iaNp(1) = -1

iaPrinter(2) = 3
iaGPMPAtm(2) = 1
iaNp(2) = 3
raaOp(2,1) = 10.0
raaOp(2,2) = 20.0
raaOp(2,3) = 30.0

first the program would decide it had to output radiances at kProfLayers pressures
then the program would try to add on pressures 10,20,30, but find it cannot.

16 kCARTA run-time architecture

This program computes the radiances associated with a specified atmosphere, by using
the k-compressed data files. The program is run in a mode where the user supplies a
driver namelist file. In addition, a gas profile file must be present (unless the user has
specified that one of the regression profiles are to be used). Note that, as supplied,
it is expected that the executable file is run from the RUN subdirectory; this can be
changed by modifying paths in kcarta.param.

The kcarta namelist driver and output data files are specified with command line
arguments. Valid invocations of kcarta have one of four following forms:

• kcarta driver outfile jacfile

• kcarta driver outfile

• kcarta driver

• kcarta

If the driver namelist file is not specified, or is ”-”, then the driver namelist file is
read from standard input. If the output or jacobian files are not specified, or are ”-”,

UMBC 126

DRAFT kCARTA Version 1.11,1.12,1.14

then the respective outputs or jacobians are written to standard output. (Note that it
is possible, but probably not a good idea, to mix regular and jacobian output data.)

Fatal errors are written to “standard error”, while a list of informative messages are
saved in the file specified by caLogFile (from the nm output section. This message
filename can be set to /dev/null, if messages are not wanted.

After the driver namelist file is parsed, the program then proceeds with the uncom-
pressions, radiance calculations, outputting results as necessary. Again, if the program
finds an error while doing these computations, it politely prints out a message and
halts.

WARNING!!!! All the character strings in the driver namelist file (e.g., the com-
ment in nm output) MUST be enclosed in quotes

The first section of code executed is to ensure that the user set parameters
in kcarta.param are correct and consistent—if not, the program halts. After the
start/stop frequencies are read in, the program verifies that they lie between the Min
and Max allowed frequencies. They are set to the min and max of the associated
10000 point blocks. In addition, 0.0025 (or 0.001 or whatever necessary wavenumber
spacing) is subtracted from the stop frequency, so that an extra set of calculations
does not have to be done for the endpoint.

If the input file was successfully read in, the binary output file is opened (if this
file exists, the program halts). As these summaries are saved, the program performs
some consistency checks, and halts if it finds weird stuff (e.g. asking information from
atmosphere 2 to be output, even if information for only one atmosphere has been
read in). The main portion of the program then runs, where the loop structure is as
follows :

UMBC 127

DRAFT kCARTA Version 1.11,1.12,1.14

parse driver file

uncompress gas abs coeffs

output path spectra?

accumulate mixed paths

another gas?

output mixed path spectra?

do radiance?

output radiances

do jacobian?

another atmosphere?

another frequency?

?

?

?

?

?

?

?

?

?

?

?

?

-

�

6
-

-

-

-

�

6
-

�

6
-

� ?

yes

yes

no

yes

yes

yes

yes

UMBC 128

DRAFT kCARTA Version 1.11,1.12,1.14

The contributions to the absorption coefficient is computed gas by gas

if 1 ≤ iGasID ≤ 28 we have compressed database
if 1 = iGasID can include water continuum
if 51 ≤ iGasID ≤ 63 we need XSEC

As the gas profiles are read in, they are checked to see if the same temperature
profile is found for each gas. If not, a warning message is flashed. If Jacobians
need to be computed for the atmosphere, they are done so after the radiance for the
atmosphere is calculated.

All through the running of kCARTA, warning messages and information messages
are output by kCARTA, so that if the program does have to stop, the user will know
where and why (this is not a politically correct way of avoiding saying the nasty word
“crash,” as in our experience kCARTA never crashes; instead, it could get perplexed
by some of the users directions, missing files and so on and then politely halts).

17 Binary Output Files from a kCARTA run

This section describes the FORTRAN output binary file that results from a kCARTA
run. This will allow a user to write his/her own reader. It might behoove the user to
refer to our supplied FORTRAN readers readkcarta.f, readjacob.f, readfkux.f and/or
the MATLAB readers readkcstd.m, readkcjac.m, readkcflux.m.

As a further hint, if the user still has problems writing reader code after perusing
this section, the user should refer to file s writefile.f in our SRC distribution. The
latter half of subroutine prepareoutput creates the header information, while subroutine
wrtout outputs the actual binary data.

One file is always output - a binary file whose name is defined in the command
line options when starting kcarta.x. The program always makes sure the status of this
file is “new” i.e. it does not overwrite an existing data file.

Depending on the value of kLongOrShort, one of three types of output files can
be written by kCARTA.

17.1 Binary Output Files :kLongORShort = 0

The beginning of this data file contains a very short summary header of the driver
namelist file that was read in, followed immediately by data output by kCARTA, in
blocks of 10000 points. A text version of the input namelist file is saved to file specified
by caLogF ile, so the user can easily view what kCARTA read in and how it did some

UMBC 129

DRAFT kCARTA Version 1.11,1.12,1.14

set-ups. At present, this option cannot be used if fluxes and/or jacobians are to be
output.

The output binary file is in the following binary format

MAIN HEADER
DATA

17.1.1 The MAIN HEADER

This part of the file summarizes kCARTA parameters, as well as how many outputs
to expect in the data file.

char*80 comment set by program, giving version number
integer kProfLayer
integer kMaxUserSe max number of params in nm params
real array (raParams(iI),iI=1,kMaxUserSet)
char*80 comment entered in nm output section
2 reals FrMin,FrMax set in nm frqncy
2 integers iSetMin,iSetMax kcomp block numbers

corresponding to above freqs
integer kLongOrShort whether long or short header style used
real frequency step size = dv
real chunk wavenumber spread 10000*dv
integer iTotal = total num outputs per 1000 pt chunk

17.1.2 The DATA

The most relevant information from the above header is contained in the five param-
eters iSetMin, iSetMax, iTotal, FrMin, dv

The total number of 10000 point kCARTA chunks processed is

iChunk = iSetMax− iSetMin + 1

For each of these chunks, there are iTotal outputs of 10000 points each, correspond-
ing to each of the optical depths, mixed paths and radiances output by kCARTA. The
corresponding wavenumbers are found by

ii = (1 : 10000 ∗ iChunks)− 1

wnums(ii) = FrMin + dv ∗ ii;

UMBC 130

DRAFT kCARTA Version 1.11,1.12,1.14

The data can be sequentially read in as

ii=(1:10000*iChunks) - 1;

wnums = fmin + dv*ii;

data = zeros(10000*iChunks,iTotal);

for ii = 1 : iChunks

fprintf(1,’ reading in chunk number %4i \n’,ii);

index = (1:10000) + (ii-1)*10000;

for jj = 1 : iTotal

flen = fread(fin, 1, ’integer*4’);

ra = fread(fin, 10000, ’real*4’);

flen = fread(fin, 1, ’integer*4’);

data(index,jj) = ra;

end

end

17.2 Binary Output Files :kLongORShort = ±1

The beginning of this data file contains a summary main header of the driver namelist
file that was read in, as well as any path spectra/mixed path spectra/radiances output
by kCARTA. If the user has set kLongShort to +1 (in nm params), a text version
of this is saved to the caLogF ile file, so the user can easily view what kCARTA read
in and how it did some set-ups. If kCARTA has been asked to compute Jacobians,
another binary file is also opened for output (the program checks to ensure that this
file is also “new”). This file also contains a short header section, where the gases
whose gas amount Jacobians are to be output, have their profiles summarized. After
this header section, comes the actual Jacobian output.

Depending on the value of iOutputOption set in the nm output section, the path/
mixed path abs spectra are output for the specified paths, or the radiance spectra, are
output for the relevant pressures. The output is in blocks of 10000 points.

The output binary file is in the following binary format

MAIN HEADER
DATA

17.2.1 The MAIN HEADER

This part of the file essentially summarizes the input driver namelist file that was
parsed in, so that the user can easily find out how the program interpreted the input file

UMBC 131

DRAFT kCARTA Version 1.11,1.12,1.14

(especially as regards the possible merging of the path/mixed path/radiance outputs).
The first section contains general information for the entire run : a (kCARTA)

comment, basically giving program version number, followed by kProfLayer. Next is
the integer value of kMaxSet (which tells the program how many parameters the user
can default or set in nm params), followed by the (real) values of these nm params
parameters—parameter 1 to parameter kMaxSet.

raParams(1)=real(kLayer2Sp)
raParams(2)=real(kCKD)
raParams(3)=real(kGasTemp)
raParams(4)=real(kLongOrShort)
raParams(5)=real(kJacobOutput)
raParams(6)=real(kFlux)
raParams(7)=kSurfTemp
raParams(8)=kTempJac

The user defined comment for the specific run then follows, after which are the
frequency endpts, the kCompressed strart/stop file numbers. Finally the parameter
kLongOrShort (whether or not the complete driver namelist file info is summarized
in the header - gas profiles etc) is explicitly given (even though it is buried inside
raParams)

The next three sections then consists of the path info, mixed path info and at-
mosphere info (NOTE : if kLongOrShort = -1, then the short header option is used,
and so information that is repeated from the profile file, and the mixtable file, is not
included in the header). All the loops shown are FORTRAN implied do loops. Finally,
there is a summary section that is output. This tells the reader how many sets of
kCompressed files were processed, and also gives a succinct summary of how many
paths/mixed paths/radiances to expect for each kCompressed set that is processed.

————-GENERAL INFO————-

char*80 comment set by program, giving version number
integer kProfLayer
integer kMaxUserSe max number of params in nm params
real array (raParams(iI),iI=1,kMaxUserSet)
char*80 comment entered in nm output section
reals Frequency min, max set in nm frqncy
integers iSetMin,iSetMax kcomp block numbers

corresponding to above freqs

UMBC 132

DRAFT kCARTA Version 1.11,1.12,1.14

integer kLongOrShort whether long or short header style used
integer array (iaParams(iI),iI=1,6 =M100mb,...,MthickLayer)
real array (raPressLevels(iI),iI=1,kProfLayer+1)

————-SINGLE PATH INFO————-

if iLongOrShort > 0 for each gas, loop over kProfLayers layers,
integer iNumPaths iNumGases*kProfLayer
i i r r do loop over gas for each of kProfLayers layers, give

iPath iGasID rTemp rAmt path num, GASID, temp, amt
end

integer iNumPathOut number of paths to be output
if iNumPathOut > 0

integer array (iaPathsOut(iI),iI=1,iNumPathsOut) list of gas paths to be output

————-MIXED PATH INFO————-

integer iNpmix number of mixed paths
if iLongOrShort > 0

integer iMixFileLines num of lines in mixed table sets
if iNpMix > 0

char*130 caMix(iI),iI=1,iMixFileLines copied straight from WEIGHT
real array raMixVertTemp(iI),iI=1,iNpmix mixed path temps

if iNpMix > 0
integer iNumMPOut number of mix paths to be output

if iNumMPOut > 0
integer array (iaMixPathsOut(iI),iI=1,iNumMPOut) list of mixed paths to be output

————-ATMOSPHERE INFO————-

integer iNatm Number of Atmospheres
specified in nm radnce

integer kEmsRegions Number of different
emissivity regions that can be set

do loop over each atmosphere
integers iI,iNumLayer atm number, number of mixed

mixed path layers in atmosphere
integer array (iaRadLayers(iJ),iJ=1,iNumLayer) list of mixed

UMBC 133

DRAFT kCARTA Version 1.11,1.12,1.14

paths (layers) in the atmosphere
r r r r Tsp, Tsurf ,SVA,SH space temp, surface temp

satellite view angle, satellite height
i r r i r i iSolar,rSolarAngle,rSolarRefl, details for solar

iThermal,rThermalAngle, and backgnd thermal
iThermalJacob

integer iEms Number of emissivity data points
for each emissivity data point

reals frequency emissivity
integer iAtmOut number of radiating layers to be output

if iAtmOut > 0
integer array (iaOutLayer(iJ),iJ=1,iAtmOut) list of mixed paths where to output radiance
real array (raOutPress(iJ),iJ=1,iAtmOut) list of pressures where to output radiance

————-SUMMARY INFO————-

i i i iTotal iOutTypes number of kCompressed files and number
of output options

integer array (iaOutNum(iJ),iJ=1,iOutTypes) list of number of outputs
for each OutputOption

iTotal is the total number of sets of kCompressed files that are processed by the par-
ticular run. For example, if the start/stop frequencies are 805.0 and 905.0 respectively,
this means that 4 kCompressed chunks are processed : 805-830,830-855,855-880 and
880-905.

iOutTypes is the total number of print options specified. For example, if the
program is to output 3 path spectra, 1 radiance for atmosphere number 1 and 5
radiances for atmosphere number 2, there are a total of 3 print options (iOutTypes
= 3). The total number of outputs to be expected for each of this print option is
set in iaOutNum. For our example, this means iaOutNum(1)=3,iaOutNum(2)=1 and
iaOutNum(3)=5.

17.2.2 The path spectra/mixed path spectra/radiance DATA

For each set of data files that have been uncompressed, the entire relevant set of
data is output to the data file. No further subdivision is possible. For example, if the

UMBC 134

DRAFT kCARTA Version 1.11,1.12,1.14

current wavenumber block is 855-880 cm−1, then the program will output all 10000
points for each path/mixed path/radiance/ jacobian it has been asked to output.

Each logical set of data is preceded by its own header. For the standard kCARTA
output, the logical sets are divided into paths, mixed paths and the separate atmo-
sphere. For the Jacobian output, for each of the atmospheres, the logical sets are
divided into the separate gas jacobians, the temperature jacobian, the weighting func-
tions and the surface jacobians.

The header is in the following format :

i i i iMainType,iSubMainType,iNumberOut
i r r r kMaxPts,rFrLow,rFrHigh,rDelta

• iMaintype = 1,2,3
This reflects what OutputOption is being processed. 1 means paths, 2 means
mixed paths and 3 means radiances

• iSubMainType
If paths or mixed paths are being output (iMainType=1,2) then this is set to
kLayer2Sp (so we easily know if these are transmittances, optical depths ...)
If radiances are being output (iMainType=3) then this is set to the current at-
mosphere number

• iNumberOut
This is the number of outputs to expect in this logical set of data. For exam-
ple, if kProfLayers mixed paths are to be output, this number will be kProfLayers

• kMaxPts
THis tells how many points are in each output; this is 10000

• rFrLow is the lower frequency bound for this particular kCompressed set

• rFrHigh is the upper frequency bound for this particular kCompressed set

UMBC 135

DRAFT kCARTA Version 1.11,1.12,1.14

• rDelta is the point spacing for this particular kCompressed set

Having written out the header, the program then proceeds to output the required
data.

If gas abs spectra are being output, then the following is output for the required
iNumPathOut gas paths

real array (raAbs(iFr),iFr=1,10000)
real array ...
real array (raAbs(iFr),iFr=1,10000)

If mixed path spectra are being output, then the following is output for the required
iMixOut mixed paths

real array (raAbs(iFr),iFr=1,10000)
real array ...
real array (raAbs(iFr),iFr=1,10000)

If radiances are being output, then the following is output for each of the required
atmospheres, each needing iOutRad radiances

real array (raAbs(iFr),iFr=1,10000)
real array ...
real array (raAbs(iFr),iFr=1,10000)

Example 1: Suppose the frequency endpts specified by the user are 855 to 905
cm−1 and kCARTA is expected to output four mixed path spectra, and one radiance
for each of two atmospheres. Assume kLayerToSpace=-1.

Thus the program has to process two 10000 point chunks, the first from 855 to
880 cm−1, and the second from 880 to 905 cm−1.

description variables values
iMainType,iSubMainType,iNumberOut 2 -1 4
kMaxPts,rFrLow,rFrHigh,rDelta 10000 855.0 879.9975 0.0025

UMBC 136

DRAFT kCARTA Version 1.11,1.12,1.14

mixed path 1 (raMix1(iFr),iFr=1,kMaxPts)
mixed path 2 (raMix1(iFr),iFr=1,kMaxPts)
mixed path 3 (raMix3(iFr),iFr=1,kMaxPts)
mixed path 4 (raMix4(iFr),iFr=1,kMaxPts)

iMainType,iSubMainType,iNumberOut 3 1 1
kMaxPts,rFrLow,rFrHigh,rDelta 10000 855.0 879.9975 0.0025

atm1,rad1 (raRad1 1(iFr),iFr=1,kMaxPts)
iMainType,iSubMainType,iNumberOut 3 2 1
kMaxPts,rFrLow,rFrHigh,rDelta 10000 855.0 879.9975 0.0025

atm2,rad1 (raRad2 1(iFr),iFr=1,kMaxPts)
iMainType,iSubMainType,iNumberOut 2 -1 4
kMaxPts,rFrLow,rFrHigh,rDelta 10000 880.0 904.9975 0.0025

mixed path 1 (raMix1(iFr),iFr=1,kMaxPts)
mixed path 2 (raMix2(iFr),iFr=1,kMaxPts)
mixed path 3 (raMix3(iFr),iFr=1,kMaxPts)
mixed path 4 (raMix4(iFr),iFr=1,kMaxPts)

iMainType,iSubMainType,iNumberOut 3 1 1
kMaxPts,rFrLow,rFrHigh,rDelta 10000 880.0 904.9975 0.0025

atm1,rad1 (raRad1 1(iFr),iFr=1,kMaxPts)
iMainType,iSubMainType,iNumberOut 3 2 1
kMaxPts,rFrLow,rFrHigh,rDelta 10000 880.0 904.9975 0.0025

atm2,rad1 (raRad2 1(iFr),iFr=1,kMaxPts)

17.3 The Jacobian file

If kJacobian == 1 then an auxiliary data file (could have ’JAC’ appended to it) will
be produced. It has the same header info as the main output file, and is in the format
General Header, Special Header, Data. As usual, the output Jacobian file is in the
following binary format
MAIN HEADER
DATA

————-GENERAL INFO————-

char*80 comment entered in nm output section
integer kProfLayer
reals Frequency min, max set in nm frqncy

UMBC 137

DRAFT kCARTA Version 1.11,1.12,1.14

integers iSetMin, iSetMax kcomp block numbers
corresponding to above freqs

———–SPECIAL HEADER ————-

integer iNumDQ number of gases we do d/dq for
integer iAtmJac number of atmospheres we do rad, jacs for
integer array iaLayerJac(iI),iI=1,iAtmJac
integer kProfLayer
reals Frequency min, max set in nm frqncy
integers kcomp min, max kcomp block numbers

corresponding to above freqs
i r r do loop over iNumDQ gases stating GASID,

iGasID rTemp rAmt temperature, amount

————-SUMMARY INFO————-

i i i iTotal iNatmJac iNumDQ number of kCompressed files,
number of atmospheres and
number of gases whose d/dq computed

integer array (iaLayerJac(iJ),iJ=1,iNatmJac) list of number of layers in the
atmospheres whose Jacobians computed

iTotal is the total number of sets of kCompressed files that are processed by the par-
ticular run. For example, if the start/stop frequencies are 805.0 and 905.0 respectively,
this means that 4 kCompressed chunks are processed : 805-830,830-855,855-880 and
880-905.

iNatmJac is the total number of print options that ask for radiances to be output,
so that we know this is the number of forward models that will be iterated. iNumDQ,
as stated above, is the number of gases whose Jacobians have been specified in
nm jacobn. For each of the iNatmJac atmospheres, iaLayerJac contains the number
of mixed paths in the atmosphere. For example, if the program is to output radiances
for 2 atmospheres, one that has 90 mixedpaths and the other 43 mixedpaths. Then
iNatmJac=2, and iaLayerJac(1)=90 and iaLayerJac(2)=43.

UMBC 138

DRAFT kCARTA Version 1.11,1.12,1.14

17.4 The Jacobian DATA

——— DATA ————————

As above, the DATA consists of 10000 point blocks, repeated in the format de-
scribed above (header + data) for each of the Jacobians. The jacobians have been
calculated in the following order (for each atmosphere)

d/dq gas 1 layer atm(1,lower) ... layer atm(1,upper)
d/dq gas 2 layer atm(1,lower) ... layer atm(1,upper)
... ...
d/dq gas N layer atm(1,lower) ... layer atm(1,upper)
d/dT layer atm(1,lower) ... layer atm(1,upper)
WGT FCN layer atm(1,lower) ... layer atm(1,upper)
SURFACE 1 2 3 4

where the 4 surface jacobians are d/d(Surface Temp),d/d(Surface Emissivity),
d(Thermal BackGnd)/d(Surface Emissivity) and d(Solar)/d(Surface Emissivity)

As usual, the header is in the following format :

i i i iMainType,iSubMainType,iNumberOut
i r r r kMaxPts,rFrLow,rFrHigh,rDelta

• iMaintype
This tells which of the atmospheres is being processed

• iSubMainType
This reflects what is being processed.
1,2,3 ... are the GasID whose jacobian is being computed and output
0 means this is the temperature jacobian
-10 means this is the weighting functions
-20 means this is the set of surface jacobians

• iNumberOut
This is the number of outputs to expect in this logical set of data. For exam-

UMBC 139

DRAFT kCARTA Version 1.11,1.12,1.14

ple, if kProfLayers mixed paths are to be output, this number will be kProfLayers

• kMaxPts
THis tells how many points are in each output; this is 10000

• rFrLow is the lower frequency bound for this particular kCompressed set

• rFrHigh is the upper frequency bound for this particular kCompressed set

• rDelta is the point spacing for this particular kCompressed set

Hence if there are 5 gases, and atmosphere 1 has 10 layers, there will be [(5+2)*10]
+ 4 = 74 blobs of data for that atmosphere, as follows.

• For each of the 5 gases, a set of gas amount Jacobians are done; in addition,
a set of temperature Jacobians and a set of weighting functions are computed.
This takes up (5+1+1)*10 = 70 blobs of data

• In addition, there are four surface parameter Jacobians output (surface temp,
surface emissivity,thermal background wrt surface emissivity and solar contribu-
tion wrt surface emissivity).

Example 1: Suppose the frequency endpts specified by the user are 855 to 880
cm−1 and kCARTA is expected to output four mixed path spectra, and one radiance
for each of two atmospheres. Assume atmosphere 1 has 10 layers, while the other has
15 layers, and the user wants the gas jacobian for gasID 7 to be output.

Thus the program has to process one 10000 point chunks, from 855 to 880 cm−1.

description variables values
Atm 1
gas 1 iMainType,iSubMainType,iNumberOut 1 7 10

kMaxPts,rFrLow,rFrHigh,rDelta 10000 855.0 879.9975 0.0025
(raGas7(iFr),iFr=1,kMaxPts)
...
(raGas7(iFr),iFr=1,kMaxPts)

UMBC 140

DRAFT kCARTA Version 1.11,1.12,1.14

temperature iMainType,iSubMainType,iNumberOut 1 0 10
kMaxPts,rFrLow,rFrHigh,rDelta 10000 855.0 879.9975 0.0025

(raTempr(iFr),iFr=1,kMaxPts)
...
(raTempr(iFr),iFr=1,kMaxPts)

wgt fcn iMainType,iSubMainType,iNumberOut 1 -10 10
kMaxPts,rFrLow,rFrHigh,rDelta 10000 855.0 879.9975 0.0025

(raWgt(iFr),iFr=1,kMaxPts)
...
(raWgt(iFr),iFr=1,kMaxPts)

surface param iMainType,iSubMainType,iNumberOut 1 -20 4
kMaxPts,rFrLow,rFrHigh,rDelta 10000 855.0 879.9975 0.0025

(raSurf(iFr),iFr=1,kMaxPts)
...
(raSurf(iFr),iFr=1,kMaxPts)

Atm 2
gas 1 iMainType,iSubMainType,iNumberOut 2 7 15

kMaxPts,rFrLow,rFrHigh,rDelta 10000 880.0 904.9975 0.0025
(raGas7(iFr),iFr=1,kMaxPts)
...
(raGas7(iFr),iFr=1,kMaxPts)

temperature iMainType,iSubMainType,iNumberOut 2 0 15
kMaxPts,rFrLow,rFrHigh,rDelta 10000 880.0 904.9975 0.0025

(raTempr(iFr),iFr=1,kMaxPts)
...
(raTempr(iFr),iFr=1,kMaxPts)

wgt fcn iMainType,iSubMainType,iNumberOut 2 -10 15
kMaxPts,rFrLow,rFrHigh,rDelta 10000 880.0 904.9975 0.0025

(raWgt(iFr),iFr=1,kMaxPts)
...
(raWgt(iFr),iFr=1,kMaxPts)

surface param iMainType,iSubMainType,iNumberOut 2 -20 4
kMaxPts,rFrLow,rFrHigh,rDelta 10000 880.0 904.9975 0.0025

(raSurf(iFr),iFr=1,kMaxPts)
...
(raSurf(iFr),iFr=1,kMaxPts)

UMBC 141

DRAFT kCARTA Version 1.11,1.12,1.14

Notice how for each atmospher, the gas jacobian, temperature jacobian and weight-
ing function have the required number of layers, while the surface parameter jacobian
always has 4 items that are output.

17.5 The Flux file

If kFlux = 1,2,3,4,5 then an auxiliary data file, with ’FLUX’ or ’OLR’ appended to
it, will be produced. It has the same header info as the Jacobian file, and is in the
format General Header, Special Header, Data. As usual, the output Flux file is in the
following binary format
MAIN HEADER
DATA

————-GENERAL INFO————-

char*80 comment entered in nm output section
integer kProfLayer
reals Frequency min, max set in nm frqncy
integers iSetMin, iSetMax kcomp block numbers

corresponding to above freqs

———–SPECIAL HEADER ————-

integer iFluxDiff number of flux diffs == 1
integer iAtmRad number of atmospheres we do rad for
integer array iaLayerRad(iI),iI=1,iAtmRad
integer kProfLayer
reals Frequency min, max set in nm frqncy
integers kcomp min, max kcomp block numbers

corresponding to above freqs

————-SUMMARY INFO————-

i i i iTotal iNatmJac iNumFlux number of kCompressed files,
number of atmospheres and
number of flux diffs (1) computed

UMBC 142

DRAFT kCARTA Version 1.11,1.12,1.14

integer array (iaLayerRad(iJ),iJ=1,iNatmRad) list of number of layers in the
atmospheres where radiances computed

iTotal is the total number of sets of kCompressed files that are processed by the par-
ticular run. For example, if the start/stop frequencies are 805.0 and 905.0 respectively,
this means that 4 kCompressed chunks are processed : 805-830,830-855,855-880 and
880-905.

iNatmRad is the total number of print options that ask for radiances to be output,
so that we know this is the number of forward models that will be iterated. iNum-
Fluxes, is the number of fluxes (== 2, for upward and downward) computed. For each
of the iNatmRad atmospheres, iaLayerRad contains the number of mixed paths in the
atmosphere. For example, if the program is to output radiances for 2 atmospheres,
one that has 90 mixedpaths and the other 43 mixedpaths. Then iNatmRad=2, and
iaLayerRad(1)=90 and iaLayerRad(2)=43.

17.6 The Flux DATA

——— DATA ————————

As above, the DATA consists of 10000 point blocks, repeated in the format de-
scribed above (header + data) for each flux set. The fluxes have been calculated in
the following order (for each atmosphere)

net=upward-downward flux layer atm(1,lower) ... layer atm(1,upper)

As usual, the header is in the following format :

i i i iMainType,iSubMainType,iNumberOut
i r r r kMaxPts,rFrLow,rFrHigh,rDelta

• iMaintype
This tells which of the atmospheres is being processed

• iSubMainType
This reflects what is being processed.
+1 means this is net=(upward-downward) flux

UMBC 143

DRAFT kCARTA Version 1.11,1.12,1.14

• iNumberOut
This is the number of outputs to expect in this logical set of data. For exam-
ple, if kProfLayers mixed paths are to be output, this number will be kProfLayers

• kMaxPts
THis tells how many points are in each output; this is 10000

• rFrLow is the lower frequency bound for this particular kCompressed set

• rFrHigh is the upper frequency bound for this particular kCompressed set

• rDelta is the point spacing for this particular kCompressed set

Hence if atmosphere 1 has 10 layers, there will be 10 blobs of data for that
atmosphere, as follows.

• For each of the 10 layers, there is a net=(upward-downward) flux

Example 1: Suppose the frequency endpts specified by the user are 855 to 880
cm−1 and kCARTA is expected to output four mixed path spectra, and one radiance
for each of two atmospheres. Assume atmosphere 1 has 10 layers, while the other has
15 layers.

Thus the program has to process one 10000 point chunks, from 855 to 880 cm−1.

description variables values
Atm 1
up-down iMainType,iSubMainType,iNumberOut 1 1 10

kMaxPts,rFrLow,rFrHigh,rDelta 10000 855.0 879.9975 0.0025
(netflux(iFr),iFr=1,kMaxPts)
...
(netflux(iFr),iFr=1,kMaxPts)

Atm 2

UMBC 144

DRAFT kCARTA Version 1.11,1.12,1.14

up-down iMainType,iSubMainType,iNumberOut 2 1 15
kMaxPts,rFrLow,rFrHigh,rDelta 10000 855.0 879.9975 0.0025

(netflux(iFr),iFr=1,kMaxPts)
...
(netflux(iFr),iFr=1,kMaxPts)

17.7 Reading the binary output file from a kCARTA run

For those fortunate MATLAB users, a set of read*.m files have been written so that
the binary file can be read in. The main file names are readkcarta.m and readkcstd.m.

17.7.1 readkcstd.m

This is the more powerful MATLAB reader. However it reads in the entire kCARTA
output file, and so it try to use too much memory. To overcome this problem, it does
allow the user to store the results in file “dfile”, instead of in memory.

[data, wnums] = readkcstd(kfile, dfile)

The wavenumbers are stored in “wnums” while the entire data set is stored in “data”

17.7.2 readkcarta.m

readkcarta.m can be used on computers which have memory limitations, as it allow
the user to choose specific sets of data to be read in. At present, due to these possible
memory limitations, there are two options that can be run after the MAIN HEADER
has been read in:

1. (1) read in only one COMPLETE 10000 point block of data. In other words,
save in matrix raaData, all the path/mixed path absorption spectra AND the
radiances for the atmospheres/layers, for the chosen k-comp file

2. (2) for ONE of the stored paths/mixed paths/radiating layers, store the ENTIRE
information, from freq min to freq max, in array raEntire

The program first reads in the path information (gas profiles and temperatures,
gas paths to output), the mixed path information (weights and mixed path tempera-
tures, mixed paths to be output) and then the atmosphere information (atmosphere

UMBC 145

DRAFT kCARTA Version 1.11,1.12,1.14

definitions, such as start and stop pressures, satellite viewing angle and pressures at
which to output radiances).

Suppose there are iPathOut paths to be output, iMixPathOut mixed paths to be
output and iRadianceOut radiances to be output, giving a total of iTotal = iPathOut
+ iMixPathOut + iRadianceOut. If the user chooses (1), the program asks which
of the 10000 point blocks the user wants to read in (...,805,830, ...). Assuming the
user chooses a block that is within the frequency range set in nm frqncy, then all
iTotal paths, mixed paths and radiances for this block are read in and saved in matrix
raaData, with the corresponding frequency being stored in array raFreq.

If the user chooses (2), the program asks which of the iTotal spectra/radiances
in (1 ... iTotal) the user wishes to read in. For this choice, the data spanning the
entire frequency range is read in and saved in array raEntire, with the corresponding
frequency being stored in array raFreq.

17.7.3 readkcarta.f

For non-MATLAB users, a similar FORTRAN file has been written, readkcarta.f. This
reads in a specified binary file, and outputs one of two possibilities. The first is a binary
file that has ALL the output data in it (without the patm/mixed path/ atmosphere
header information). The data for any path/mixed path/radiance is concatenated
together so that the user does not have to ”sort” through. For example, if the
start/stop frequencies spanned 50 cm−1 (making 10000*2=20000 points), then the
data relating to each output option would be output in one 20000 point array.

Suppose there are 20000 data points (eg the start/stop freqs were 605-655 cm−1),
and that 3 absorption spectra, 2 mixed path spectra and 1 radiance are output per
each 10000 point chunk (making a total of 6 data blobs output each time). The
format of the resulting file is

(raFreq(i) i=1,20000)
((raaData(i,j) i=1,20000),j=1,6)

Another possibility is that readkcarta.x can also be run so that it produces a text file
containing two columns : the frequency points and one of the paths/ mixed paths/
radiances contained in the binary file produced by kCARTA. The sequence of user
inputs for this type of run is the same as that described a few paragraphs above for
choice (2) in readkcarta.m, with the arrays raFreq, raEntire being produced.

UMBC 146

DRAFT kCARTA Version 1.11,1.12,1.14

17.7.4 readjacob.f,readjacob.m and readkcjac.m

The Jacobian files can similarly be read in, using readjacob.m, readkcjac.m for a
MATLAB afficiando, or readjacob.f for a FORTRAN diehard. The MATLAB Jacobian
readers proceed in exactly the same fashion as the the MATLAB kCARTA readers
described above, while readjacob.x will produce a file of the same binary format as
readkcarta.x above.

Note that the finite difference jacobians (column gas amounts) is dumped out in
the same format as a “basic” kCARTA file, and so can be read in using readKcBasic.m
or readKcBasic.f (described above)

However, the main (layers) jacobian data file is dumped out in a slightly different
format, and so needs to be read in differently. Suppose there was only one atmosphere
in the kCARTA run, and that it had 80 layers, with the user asking for 3 gas Jacobians.
Then for each 10000 point chunk, there would be (3*80) gas jacobians, 80 temperature
jacobians, 80 weighting functions and 4 surface parameter derivatives, making a total
of 404 each time. So if readjacob.x was being used, the format of the resulting file is

(raFreq(i) i=1,20000)
((raaData(i,j) i=1,20000),j=1,404)

Ditto for a flux file; readflux.m readflux.f would allow the user to read in the flux
data.

18 Additional Programs and Readme Files

There are a number of useful programs that are supplied in UTILITY :

Table 34: Utility programs.

compdatabase97.f creates a summary of the available k-compressed
files, by running script comp.sc. The results stored
in comp97.param (xsec.param is a similar summary
for the data in the XSEC database, and is also
required by kcarta.x)

readkcarta.f allows one to read in portions of the output binary
file, and save the results in a simpler binary or text
file

readjacob.f allows one to read in portions of the output jaco-
bian file, and save the results in a simpler binary
file

UMBC 147

DRAFT kCARTA Version 1.11,1.12,1.14

readflux.f allows one to read in portions of the output flux
file, and save the results in a simpler binary file

makeinp.f using a template input file, this can be used as part
of a script to automate running kcarta.x. This file
replaces starts/stop frequencies, and output data
file names, as well as surface temperatures and
input profile names

makeprofile.f using a set of test profiles, this file, along with
makeinp.f, can be used as part of a script to auto-
mate testing kcarta.x

readkcarta.f, readjacob.f and readflux.f are FORTRAN files that directly read the
output from kcarta.x and save the results to a data file that can be more easi;ly read
in, as it has been stripped of all the header information duplicating the driver namelist
file and profile.

readkcstd.m, readkcjac.m and readkcflux.m are MATLAB files that directly read
the output from kcarta.x. This would be theMATLAB readers that we would suggest
to be used.

readkcarta.m, readjacob.m and readflux.m are MATLAB files that directly read the
output from kcarta.x. Since they allow the user to choose what part of the file to read
in, they could be useful to users whose computers have limited amounts of memory;
however, we would still recommend using the afore mentioned set of readers.

rdairs.m is a MATLAB reader that can load in a file produced by running read-
kcarta.f, readflux.f or readjacob.f (it assumes that the files that are written out by the
read*.f programs have “CON” appended to the original filename).

For people familiar with the older versions of kCARTA, which are driven by a
GENLN2 style file, we have provided a “translator” code that takes the old in-
put file and translates it to a namelist file. The set of files that do this are in
SRC/MAKENAMELIST; by typing “make” when in this subdirectory, executable “make-
list.x” is produced and stored in /BIN. To use this code to translate file “old driver file”
to “new namelist.nm” by typing

makelist.x old_driver_file new_namelist.nml

We also supply KLAYERS, which contains a set of files that take in a point profile
supplied by a user, and changes it to to kProfLayers layer path averaged profile. The

UMBC 148

DRAFT kCARTA Version 1.11,1.12,1.14

user is referred to the documentation in that subdirectory for instructions on how to
run the necessary programs, in particular, the files description.txt and sci.txt.
To change a radiosonde point profile to a KLAY ERS file, go to subdirectory “/KCARTA/SCRIPTS”
Assuming everything is OK (eg paths are set correctly and so on), run your sonde pro-
file through klayers.x by typing:

makeprof.sc sonde_profile_in rtp_layers_out

where “sonde profile in” contains the input (levels) point profile and “rtp layers out”
is the resulting KLAYERS layer averaged RTP profile. This is the profile that can be
used by kCARTA by specifying its name in the namelist driver file.

In addition to this document, other helpful files exist. In the /DOC subdirectory,
the following files can be found

• JQSRT kCompress.pdf: Paper describing the compressed database, in pdf for-
mat

• JQSRT kCompress.ps: Paper describing the compressed database, in ps format

• netcdfinfo: for the brave NetCDF user, how to download and compile updated
versions

• readme.tex: how to set up and run the kCARTA distribution

• gasids: list of HITRAN gas IDs

The KLAYERS/Doc subdirectory has the following text files

• junkreadme.txt: how to set up and compile the source code

• description.txt: description of the source code files

• sci.txt: description of the physics/math used in programming up KLAYERS

The UTILITY subdirectory also has a file, Readme.txt, that gives a brief description
of the auxiliary files contained there.

UMBC 149

DRAFT kCARTA Version 1.11,1.12,1.14

19 Science : Radiance and Jacobian calculations

To allow the user flexibility in creating an atmosphere, kCARTA allows the user to
define the start/stop pressure boundaries arbitrarily. In other words, the user does not
have to worry about these pressures being at the AIRS pressure layers themselves -
they can be in the midst of a pressure layer.

The direction of radiation travel to the instrument is determined by the start/stop
pressures defined by the user. For example, s start/stop pressure combination of
1000.0 40.0 would imply a downward looking instrument, as the radiation travels from
a start pressure of 1000.0 mb (ground) to a stop pressure of 40.0 mb (instrument
posn).

The program does check to ensure that the start/stop pressures are within the up-
per/lower bounds of the AIRS pressure layers - if not, they are reset to the appropriate
value. For example, a stop pressure of 0.0 mb is reset to 0.005 mb, while any pressure
above 1100.0 mb is reset to that value. Within the defined atmosphere, the user can
ask kCARTA to output the radiance at any pressure level. The only restriction is that
for any ONE atmosphere, the program can only output radiances at a maximum of
kProfLayers pressures.

Note that the Jacobian calculations are performed only for one scenario i.e. radi-
ance between top and bottom of atmosphere. In other words, if you ask the program
to compute the radiances at a number of different pressures, for any of the defined
atmospheres, the only Jacobian that is performed and output is for an instrument at
the very top (downward looking instr) or very bottom (upward looking instrument).

19.1 Fractional layers

The lower/upper fractions that define the atmosphere are taken into account as fol-
lows:

1) The specified endpoint pressure of the bottom layer (start pressure for downward
looking instrument, or stop pressure for a upward looking instrument) defines the
fractional bottom layer, rFracBot. Using this information, a modified temperature of
this layer is used for the Planck radiance — an average of the temperature computed
at this pressure and the temperature computed at the top of the layer for a downward
looking instrument (or bottom, for a upward looking instrument).

Similarly, the specified endpoint pressure of the top layer (stop pressure for down-
ward looking instrument, or start pressure for a upward looking instrument) defines the
fractional top layer, rFracTop. Using this information, a modified temperature of this

UMBC 150

DRAFT kCARTA Version 1.11,1.12,1.14

layer is used for the Planck radiance — an average of the temperature computed at
this pressure and the temperature computed at the bottom of the layer for a downward
looking instrument (or top, for a upward looking instrument).

2) Consider a downward looking instrument. Suppose the user wants to output
the radiance at pressure P, which lies in the i th AIRS pressure layer, between AIRS
pressure levels p(i),p(i+1), as shown.

p(i+2)

p(i+1)

(pavg(i + 1), Tavg(i + 1))

(pavg(i), Tavg(i))

p(i)

P

(pavg, Tavg)

From the AIRS layering, we know the pressures p(i+2),p(i+1),p(i) We therefore know
the average pressures of layers i-1, i,i+1, as well as that of the fractional shaded layer,
are given by

pavg(i) =
p(i + 1)− p(i)

ln(p(i + 1)/p(i))
pavg(i + 1) =

p(i + 2)− p(i + 1)

ln(p(i + 2)/p(i + 1))

pavg(i− 1) =
p(i)− p(i− 1)

ln(p(i)/p(i− 1))
pavg =

P − p(i)

ln(P/p(i))

From the profile, we know the avg temp of the i-1,i,i+1th layers are Tavg(i+1), Tavg(i), Tavg(i−
1) respectively.

Assuming that the average temperature of a layer varies linearly with ln(pavg), we
can then quadratically interpolate to find the temperature of the fractional layer, Tavg.
(the quadratic interpolation uses the fractional layer, and the two closest other layers).
This temperature is used as the Planckian temp of the shaded portion of layer i.

The scaling of the absorption coefficients for the full layer versus the fractional
layer also needs to be determined. This fraction rF is computed simply by scaling
linearly in pressure

rF =
p(i)− P

p(i)− p(i + 1)

UMBC 151

DRAFT kCARTA Version 1.11,1.12,1.14

where as usual, p(i), p(i + 1) are the AIRS pressure levels and P is the user specified
pressure. The absorption coefficients for the fractional layer are then given by the
product of absorption coefficient for the full layer × required fraction rF .

For the downward looking instrument, the bottom portion of the layer is the
required fractional part, as shown. For an upward looking instrument, the top portion
of the layer would be the required fractional part.

3) For a down looking instrument, when computing background thermal/solar
contributions, ALL the layers above ground are used (ie top of layer kProfLayers -
gnd) However, when the upwelling radiation incident at the instrument is computed,
the fractional bottom layer (and any other fractional layers where the user specifies
radiances to be output) is used so that

Rad(pressure P) = Emission(fractional layer) +
Rad(bottom of layer)*Trans(thru fractional layer)

where an average temperature is computed for the fractional part of the layer in
a manner similar to that described above. The absorption coefficients used are also
scaled by the required fraction.

4) For a up looking instrument, when the downwelling radiation incident at the
instrument is computed, the fractional top part of the relevant layer

Rad(pressure P) = Emission(fractional layer) +
Rad(top of layer)*Trans(thru fractional layer) +
solar effects(thru fractional layer)

where an average temperature is computed for the fractional part of the layer in
a manner similar to that described above. The absorption coefficients used are also
scaled by the required fraction.

19.2 Broadening of the lines

The broadening of each line, due to the self component and the foreign component,
is computed as

brdair = (P − PS)× abroad

brdself = (PS)× sbroad

brd = brdair + brdself

brd → brd× (296/T)abcoef

UMBC 152

DRAFT kCARTA Version 1.11,1.12,1.14

For the atmosphere, since nitrogen and oxygen are dominant gases, the self broaden-
ing component would conceivably be important for these two. However, due to their
structure, they are very weakly active in the infrared, and so for all practical purposes,
there is hardly any change. Similarly, almost all the other gases in the atmosphere
are mixed in very weakly, and so the contribution to the line width, due to the self
component, is very small. Thus if there is a slight perturbation to the self pressure
of almost any gas in the atmosphere, there would hardly be any change in the broad-
ening. Water vapor is a special case, as sometimes an especially dry or wet profile is
encountered, leading to noticeable changes in the broadening. Depending on the self
pressure, the self width can be almost 10 times the foreign width. as the amount of
water vapor in the atmosphere can be upto a few percent of the air in the (lower)
atmosphere. Furthermore, water vapor concentrations have large temporal and spatial
variation, and can vary by upto an order of magnitude. For these reasons, to do the
spectroscopy of water vapor correctly, kCARTA interpolates compressed spectroscopy
tables both in temperature as well as in partial pressure.

19.3 Radiative transfer algorithm

The standard Schwartschild equation for time independent radiation transfer through
a plane atmosphere, can be written as [?, ?]

µ
dI(ν)

dka

= −I(ν) + J(ν)

where J is the source function, usually taken to be the Planck function. However, it
could also include scattering terms, or need to account for non local thermodynamic
equilibrium as well.

For a CLEAR SKY divided into parallel layers, this can be solved to give

R(ν) = Rs(ν) + Rlayeremission(ν) + Rth(ν) + Rsolar(ν) (2)

where the four terms are the surface, layer emissions, downward thermal and solar
respectively. Using an isotropic reflectance of (1 − ε)/π, and denoting the Planck
function as B(T), ε as the surface emissivity, Ts as the surface temperature, the
satellite viewing angle as θsatellite, the sun zenith angle as θsolar, and discretizing the
radiative transfer equation, the above four terms are written out as

Rs(ν) = εB(ν, Ts)τ1→∞(ν, θsatellite)

UMBC 153

DRAFT kCARTA Version 1.11,1.12,1.14

Rlayeremission(ν) =
i=N∑
i=1

B(ν, Ti)(τi+1→∞(ν, θsatellite)− τi→∞(ν, θsatellite))

Rth(ν) =
1− ε

π

i=1∑
i=N

∫ 2π

0
dφ
∫ π/2

0
d(cos(θ))cos(θ)×

B(ν, Ti)(τi−1→ground(ν, θ)− τi→ground(ν, θ))

Rsolar(ν) =
1− ε

π
B(ν, Tsolar)cos(θsolar)×

τN→ground(ν, θsolar))τground→N(ν, θsatellite))Ωsolar

The above terms have been written in terms of layer to space transmittances.
Alternatively the forward radiative transfer algorithm can easily be written iteratively;
for example, the first two terms would be rewritten as :

R(ν) = εsB(Ts, ν)Πi=N
i=1 τi(ν) +

i=N∑
i=1

B(Ti, ν)(1.0− τi(ν))ΠN
j=i+1τj(ν) (3)

In what follows, the discretized form of the radiative transfer equation is used.

19.3.1 Background thermal radiation

The thermal background is included by incorporating the diffusion approximation (refer
Liou etc). This involves replacing an integration over the half plane with using a single
zenith diffusive angle θd (along with the 2π factor that arises from the azimuthal
integration). The zenith integral of the form

d(θ) sin(θ) cos(θ) B(T (i)) τi→ground(ν, θ) (4)

can be replaced, using the mean value theorem, to

1

2
B(T (i)) τj→ground(ν, θd) (5)

where the angular integration has been reduced to a optimum diffusivity angle, so
requiring the transmittance to be evaluated only for this angle τj→ground(ν, θd). Note
this angle varies for each frequency, for each layer.

UMBC 154

DRAFT kCARTA Version 1.11,1.12,1.14

This reduces the computation for the downward thermal contribution to the form

1

2
B(Ti) [τi−1→ground(θd1)− τi→ground(θd2)] (6)

where based on the sum of the absorption coefficient upto the i, i−1 th layers, θd1, θd2

are the optimum diffusion angles.
These optimum diffusion angles are computed as follows. Rewriting the transmis-

sion τi→ground(ν, θ)) as exp(−∑j=1
j=i−1 kj/cos(θ)) =

exp(−k(i)/cos(θ)), this is seen to be the exponential integral of the third kind E3(k
(i)),

where k(i) =
∑j=1

j=i−1 kj. The exponential integral can easily be performed (e.g. Nu-
merical Recipes, MATLAB toolbox), and the optimum diffusion angle for layer i, θd

obtained from

θd(k
(i)) =

−k(i)

ln(2E3(k(i)))
(7)

In the limit of k(i) � 1, θd → arccos(0.5), while in the limit of k(i) � 1, θd →
arccos(1.0).

For a discrete set of values of k(i) between 0 and 10, the diffusion angles were
computed and saved. A polynomial fit to the data, such that errors between the
computed diffusion angle and the polynomial approximations were always less than
0.5%, was then made. In this fashion, kCARTA can very quickly compute θd for an
arbitrary k(i).

The accuracy of this computation was checked by propagating the thermal back-
ground between the top of the atmosphere and the ground using this polynomial
approximation, and comparing it to the results from a 40 point Gaussian quadrature.
This was performed over the 605 to 2805 cm−1 region, for a variety of AIRS regression
profiles, The typical brightness temperature error was less than 0.001 K.

However, this means that at each layer, for each wavenumber bin, the program has
to compute the optimum diffusive angle. A way of speeding this up was decided upon,
as follows. The value of θd that is often used is that of arccos(3/5) see e.g. Liou,
especially for k ≤ 1. As we wished to have a maximum error ≤ 0.1K in the brightness
temperature measured by the instrument at the top of the atmosphere, throughout
the wavenumber region encompassed by our spectroscopic kCARTA database, an in-
vestigation of the adequacy of the simple diffusion approximation (using arccos(3/5)
was carried out, using the US Standard Profile and a selection of some of the AIRS
regression profiles. Neglecting solar radiation, the total radiation at the top of the
atmosphere was computed using the forward model and the reflected background
thermal. The truth for the background thermal was an angular integration carried

UMBC 155

DRAFT kCARTA Version 1.11,1.12,1.14

out using the exact diffusion angles at each layer, using the polynomial approxima-
tion instead of computing the exponential integral. The test value was obtained by
using the diffusive angle of arccos(3/5) in the downward thermal at each layer, before
reflecting it and including it in the overall radiance. As expected, in the wave num-
ber regions where the atmosphere was blacked out, the diffusion approximation was
perfectly acceptable. However, in the regions where the atmosphere was transparent,
such as the ozone region, the errors could be as large as 0.2K, especially if one used
realistic surface emissivity values of 0.8 in this region.

A more desirable thermal approximation was then searched for. Recall that the lay-
ering structure of kCARTA assumes an atmosphere divided into kProfLayers pressure
layers. Due to the τ(layer → ground) factor at each level, one sees that the most
significant contribution to the thermal background is from the bottom layers. For the
topmost layers (kProfLayers down to J + 1), the simple diffusive approximation
was used (one angle, arccos(3/5) at all layers). For the bottom J layers, the accurate
diffusion angle for calculated for each layer, based on the polynomial approximation
to θd(k(i → ground)). Depending on the wavenumber region, the value of J used
produces less than 0.1 K errors in all profiles. For instance, where the atmosphere is
blacked out (e.g. in the water region, about 1500 cm−1), a value of J = 6 was suffi-
cient, while a transparent region such as about 2500 cm−1, a larger value of J(= 30)
was used. For the sampled profiles, using a surface emissivity value of 0.8, this always
produced less than 0.1k brightness temperature errors, and had the advantage of being
faster than if the angle were computed at all layers, for all frequencies.

Note that when the background thermal contribution to the Jacobians is com-
puted, the topmost (kProfLayers-J/2) layers are assumed to have no contribution.
The bottommost J/2 layers are then assumed to have an acos(3/5) diffusive angle,
and this is the value used. This method is chosen because we are interested in the
sign of the Jacobian, not the absolute magnitude. In addition, only the bottom few
layers have a large thermal contribution to the Jacobian (typically less than 30%).

In section *RADNCE, the thermal background parameter kThermal, has three
possible values the user can use: -1,0,1. If a value of -1 is chosen then no background
thermal is included. If a value of 0 is chosen, the diffusive approximation is used (using
acos(3/5) at the top layers, and then on a monochromatic basis, using the optimum
diffusive angle at the lower layers). If a value of 1 is chosen, the code does an analytic
integration (Gaussian Quadrature) over the zenith angle, which is accurate but very
slow.

UMBC 156

DRAFT kCARTA Version 1.11,1.12,1.14

19.3.2 Solar radiation

The solar contribution is much easier to include than the thermal contribution; as-
suming the sun radiates as a blackbody whose temperature is 5600 K, the solar term
that in incident at the earth’s surface is given by

B(5600K, ν) Ωsolar τ(top → ground) cos(θsolar) (8)

where Ωsolar = π(rse/re)
2 is the geometry factor that accounts for the sun-earth

distance and radius of sun. The cos(θsolar) is the geometry factor accounting for the
solar radiation coming in at an angle with respect to the vertical. This solar radiation
is then reflected back up to the instrument, where, as for the thermal background, an
isotropic reflectance factor of (1− ε)/π is used.

Both these thermal/solar radiation terms can be easily turned on/off just before
runtime by simply setting relevant parameter switches.

19.3.3 Upward looking instrument

The code can compute radiance measured by an upward looking instrument. This
is achieved by only computing the downward flux at one angle (the satellite viewing
angle). Once again, this feature can be turned on/off by simply setting a parameter
before runtime.

The present AIRS layering is too coarse to give an accurate estimate of the radiation
measured by an upward looking instrument. However, one can ask the code to give
an estimate, using the following simple equation :

R(ν) = Rlayer(ν) + Rsolar(ν) (9)

where the two terms are the layer emissions and solar respectively. Again denoting
the Planck function as B(T), the satellite viewing angle as θsat, the sun zenith angle
as θsolar (which is equal to the satellite viewing angle if the sun fills the field of view),
and discretizing the radiative transfer equation, the two terms are written out as

Rlayer(ν) =
i=1∑
i=N

B(ν, Ti) [τi−1→ground(ν, θsat)− τi→ground(ν, θsat)]

Rsolar(ν) = B(ν, Tsolar) τN→ground(ν, θsolar)

UMBC 157

DRAFT kCARTA Version 1.11,1.12,1.14

19.4 Jacobian algorithm

Here we describe the algorithm for a downward looking instrument. Consider only
the upward terms in the radiance equation (the layer emission and the surface terms),
reproduced here for convenience. Assuming a nadir satellite viewing angle we have :

R(ν) = εsB(Ts, ν)τ1→N(ν) + Σi=N
i=1 B(Ti, ν)(1.0− τi(ν))τi+1→N(ν) (10)

Then, one obtains, after differentiation with respect to the m-layer variable sm,
(where the differentiation can be with respect to gas amount or layer temperature
sm = qm(g), Tm)

∂R(ν)

∂sm

= εsB(Ts)
∂τ1→N(ν)

∂sm

+
N∑

i=1

B(Ti, ν)(1.0− τi(ν))
∂τi+1→N(ν)

∂sm

+

N∑
i=1

τi+1→N
∂

∂sm

[B(Ti, ν)(1.0− τi(ν))] (11)

As usual, τm(ν) = exp−km(ν), τm→N(ν) = ΠN
j=mexp−kj(ν). Performing the above

differentiation,

∂R(ν)

∂sm

= [εsB(Ts)τ1→N] (−1)
∂km(ν)

∂sm

+[
m−1∑
i=1

(1.0− τi(ν))Bi(ν)τ(ν)i+1→N

]
(−1)

∂km(ν)

∂sm

+[
(1.0− τm(ν))

∂Bm(ν)

∂sm

−Bm(ν)
∂τm(ν)

∂sm

]
τm+1→N(ν)

The individual Jacobian terms in kCARTA code can then by obtained as follows.
Recall the layer transmission are related to absorption coefficients by

τm(qm(g)) = exp
−k(Tm)qm(g)/q

ref(g)

m(g) (12)

Then for all gases other than water, using the SVD compressed notation,

km(g)(ν) =
qm(g)

qref
m(g)

L∑
l=1

cl(g)(Tm, m)Ψl (13)

UMBC 158

DRAFT kCARTA Version 1.11,1.12,1.14

from which the gas amount derivative is simply

∂km

∂qm(g)

=
km

qm(g)

(14)

while for water,

km(w)(ν) =
L∑

l=1

cl(w)(Tm, m, qm)Ψl (15)

from which the water amount derivative is

∂km

∂qm(w)

=
L∑

l=1

∂cl(w)

∂qm(w)

Ψl (16)

The temperature derivative can similarly be written as

∂km

∂Tm

=
g=G∑
g=1

L∑
l=1

∂cl(g)

∂Tm

Ψl (17)

where the double sum is over the singular vectors and the gases.

While doing the spline interpolations of the coefficients cl(g), the derivatives
∂cl(g)

∂Tm
,

∂cl(w)

∂qm(w)
can be obtained concurrently [?] in the compressed space. (These Jacobians can

also be calculated, in compressed space, but by “perturbing” the gas amounts/layer
temperatures and then doing a finite difference derivative, before performing the un-
compression). Multiplying by the orthonormal basis matrix U then immediately gives
the analytic derivatives. Performing the calculations of the Jacobians in the com-
pressed representation is therefore easily achieved. As these radiance Jacobians are
obtained in 10000 point chunks, for all kProfLayers layers, they are easier to obtain
than finite difference Jacobians.

19.5 Cross section and water continuum jacobians

As described above, the cross-section Jacobians are also obtained exactly, by analytic
differentiation of the terms used to compute these quantities in the first place.

The water continuum jacobians are a little more complicated. The continuum
optical depth contribution is given by

kcon = kself + kforn = γ(T)q{cs(T)ps + cf (T)pf}

UMBC 159

DRAFT kCARTA Version 1.11,1.12,1.14

where γ(T) are the Van-Huber corrections to the lineshape (essentially consiting on
tanh and other terms), while the cs, cf are the self and foreign coefficients respec-
tively. In general, cs depends on temperature; while the standard CKD models do not
have cf depending on temperature, our laboratory data analysis does indicate some
dependancy in the 6 µm band, which is reflected in the above formulation. ps, pf are
the self (water) and foreign (mainly nitrogen) pressures in the layer.

Looking at the above equation, naively the amount jacobian for the self continuum
is dkself/dq = γ(T)cs(T)ps. However, if we recall that ps = nKT , then the (water
vapor) layer gas amount in q = nL = (ps/KT)L, where L is the layer thickness. This
means that the self continuum contribution to optical depth is

kself = γ(T)qcs(T)ps = γ(T)q2cs(T)(KT/L)

from which
dkself/dq = γ(T)2qcs(T)(kT)/L = 2γ(T)cs(T)ps

which is a factor of two larger than the previous estimate.

19.6 solar and background thermal Jacobians

The solar and background thermal terms for inclusion in the Jacobian calculations
are also included in the algorithm. However, due to the increase in run-time of the
code when computing the Jacobians, at present the only possible computation for
the thermal background Jacobians is using the diffusive approximation arccos(3/5) at
lower levels, independent of whether the forward model radiative transfer algorithm
used the accurate computation or the diffusive/accurate combination. Because of this,
there would be slight differences if one compared the computed Jacobians to those
obtained using finite differences between two almost similar parameterizations of the
forward model.

The Jacobians obtained using the compressed representation are much faster than
uncompressing the coefficients, doing a radiative transfer, perturbing the relevant layer,
and doing another radiative transfer, after which a finite difference radiance Jacobian
is obtained. The reason is easy to see – one would have to do these perturbed
calculations for each gas amount, at each layer, instead of obtaining the Jacobians in
big chunks.

UMBC 160

DRAFT kCARTA Version 1.11,1.12,1.14

19.7 Weighting functions

Additionally, weighting functions Wi(ν) are also computed and output as part of the
overall Jacobian file :

Rlayeremission(ν) = Σi=N
i=1 B(Ti, ν)(1.0− τi(ν))τi+1→N(ν)

= Σi=N
i=1 B(Ti, ν)Wi(ν)

19.8 Miscellaneous notes about kCARTA Jacobians

In addition to the gas amount/layer temperature Jacobians and weighting functions
described above, the Jacobians with respect to the surface temperature and surface
emissivity are also computed. The Jacobian of the background thermal contribution
with respect to the surface emissivity, and the Jacobian of the solar contribution with
respect to the surface emissivity are also output. When the instrument is upward
looking, these last four derivatives are all meaningless and are set to zero.

Another feature of the code is that the Jacobians can be output in any of three
modes. The first is a raw dR/d(var) mode, where R is a radiance, and var could be
gas amount such as layer temperature etc. Another mode is a dR/d(var)×∆(var)
mode, where if var is a gas amount, then we have appropriately weighted the Jacobian
with the gas amount at that layer. The third mode is d(BT)/d(var)×∆(var) mode,
where all the results now are Jacobians with respect to brightness temperatures, BT .

Once again, the turning on or off of the Jacobians can be achieved simply by
setting the appropriate parameter at run time. Furthermore, the inclusion of thermal
background to the Jacobian can be turned off (resulting in a significant decrease in run
time) at the expense of incorrectly estimating the Jacobians at the lowest levels (as
these are where the bulk of the background thermal contribution comes from). One
can use either the analytic or the finite difference methods to calculate the Jacobians,
or set any of the three modes to output the Jacobian results. In addition these
computations can be performed for both down and up looking instruments.

UMBC 161

DRAFT kCARTA Version 1.11,1.12,1.14

20 Science : NLTE and TWOSTREAM scatter-

ing

20.1 Non LTE computations

Higher up in the atmosphere, the lower gas densities imply fewer collisions, which
means that the lower and higher state populations of some molecules might be better
described with a different, non local temperature. This usually happens quite high up
in the atmosphere (eg above 90 km for the 15 µm CO2 band), where there are very few
molecules; this means that the change in optical depth in the upper atmosphere is in-
significant for a spaceborne nadir viewing instrument, leading to unnoticeable changes
in observed brightness temperature. However, previous studies of the atmosphere by
limb viewers have shown that for the 4 µm CO2 band, the solar pumping very strongly
affects the vibrational temperatures of the transitions in this region; NLTE can be
seen above heights as low as 45 km, where there are enough molecules present to
noticeably alter the optical depths. While this will not affect the daytime observations
of instruments on board aircraft, spaceborne instruments such as HIRS and AIRS will
certainly see the enhancement in observed brightness temperatures. HIRS is a ra-
diometer based instrument, with very low resolution; AIRS is a much higher resolution
instrument (the channel widths in this region are about 2 cm−1), from which it should
be possible to make spectral comparisons between observations and NLTE models.

kCARTA allows the user to define a separate NON LTE profile for the (vibrational)
states of one or more bands of (different) molecules. With this information, it can
compute the NLTE optical depths and Planck function modifiers for these user speci-
fied choices “on the fly,” adding on the “background LTE” optical depths of the rest
of the molecules plus the rest of the states of the molecule(s) in question. Having done
all this, kCARTA then computes a TOA radiance. At present, the NLTE capabilities
of kCARTA are optimized for the 4 µm band of CO2; additionally, instead of using
linemixing, the Cousin lineshape is used as it is a simpler model to incorporate.

20.1.1 Computing the optical depths

Most of the modifications to the code use the standard nonLTE analysis [?, ?, ?, ?].
Let Tl be the local thermodynamic temperature of layer l, while T g,l

vib(i) be the NLTE
vibrational temperature of the ith band in question, for gas g at the same layer l.
With the vibrational band center denoted by ν0, the optical depths at NLTE is related
to the LTE optical depth by

UMBC 162

DRAFT kCARTA Version 1.11,1.12,1.14

kg,l
nlte(i, ν0)q

g,l = kg,l(i, ν0)α
g,l(i, ν0)q

g,l

where kg,l(i, ν0) is the LTE absorption coefficient, qg,l is the gas amount in lthe layer
and αg,l(i, ν0) is an adjustment factor, that depends on the population enhancememt
or depletion in the lower and upper levels of the vibrational transition under consider-
ation. Let rj, j = 1, 2 be the population ratios of the lower level (j = 1) and upper
level (j = 2); these population ratios are the ratios between the level populations nj

at NLTE vs LTE :

r1 =
nNLTE

1 (Tvib)

nLTE
1 (Tl)

r2 =
nNLTE

2 (Tvib)

nLTE
2 (Tl)

Letting g1, g2 be the Boltzmann statistical weights of the transition, the equilibrium
population ratio between the upper and lower levels is given by [?, ?]

Γ =
g1n2(Tl)

g2n1(Tl)
= exp(−hcν0/KBTl)

The above terms can be combined to [?, ?] give an expression for the adjustment
factor

αg,l(i, ν0) =
r1 − r2Γ

1− Γ
× fi

where fi is the correction to the vibration contribution to the partition function [?,
?]. As the vibrational temperature approaches the local kinetic temperature, the
adjustment factor goes to unity.

Summing over all gases and bands, and using ζ(ν0, ν) to denote the effects of
lineshape, we have the following expression for the total optical depth τl of layer l

τl =
∑
g,i

αg,l(i, ν0)k
g,l(i, ν0)q

g,lζ(ν0, ν)

=
∑

g,i(LTE)

kg,l(i, ν0)q
g,lζ(ν0, ν) +

∑
g,i(NLTE)

αg,l(i, ν0)k
g,l(i, ν0)q

g,lζ(ν0, ν)

where we have broken the optical depth into the NLTE contribution (consisting of
the vibrational bands of the gas(es) in question) and the LTE contribution (α = 1,
consisting of the weaker bands as well as other gases). As the vibrational temperature
approaches the local kinetic temperature, the adjustment factor goes to unity, which
leaves the optical depths unchanged.

UMBC 163

DRAFT kCARTA Version 1.11,1.12,1.14

20.1.2 Computing the source term for radiative transfer equation

The simple, nonscattering 1D radiative transfer equation is given by

µ
dI(ν)

dka

= −I(ν) + J(ν)

where J is the source function, usually taken to be the Planck function.
The general source function for a two level system is given by [?, ?, ?]

J(ν, Tl) = 2hc2ν3[
n1g2

n2g1

− 1]−1

Using the expression for Γ above, at LTE this reduces to the usual Planck source
function

B(ν, Tl) = 2hc2ν3[exp(+hcν0/KBTl)− 1]−1

while for the general NLTE case, this term can be written as

J(ν, Tl) = 2hc2ν3[
r1

r2

exp(+hcν0/KBTl)− 1]−1

The source term in the solution to the radiative transfer equation can then be
rewritten as [?, ?, ?, ?] βg,l(i, ν0)B(ν, Tl) where for one individual line,

βg,l(i, ν0) =
rg,l
2 kg,l(i, ν0)q

g,l

αg,l(i, ν0)kg,l(i, ν0)qg,l

Generalizing for a sum over many lines,

βl =
∑
g,i

βg,l(i, ν) =

∑
g,i r

g,l
2 (i, ν0)k

g,l(i, ν0)q
g,lζ(ν0, ν)∑

g,i αg,l(i, ν0)kg,l(i, ν0)qg,lζ(ν0, ν)

Just as was done for τl above, both the numerator and denominator can be broken
down into sums over the LTE and NLTE components, so that an overall numerical
answer for βl can be computed easily. As the vibrational temperature approaches
the local kinetic temperature, the adjustment factor goes to unity, which makes the
Planck modification factor also tend to unity.

UMBC 164

DRAFT kCARTA Version 1.11,1.12,1.14

20.1.3 Solution to the Radiative Transfer Equation

Assume that the radiation incident one one side (say the bottom) of a layer is I(ν)l−1.
The complete solution to the radiative transfer equation, which gives the radiation
exiting the other side (say the top) of the layer is then [?, ?, ?, ?]

I(ν)l = I(ν)l−1exp(−τl) + B(Tl)β[1− exp(−τl)]

where τl is given by the expression for total optical depth, and βl is the Planck function
modifier, both given above.

Figure 10 shows a comparison plot of kCARTA vs GENLN, compared to some
actual NLTE data seen in daylight viewing conditions on the AIRS instrument. Plot-
ted for AIRS, is actual NLTE dayime observations minus LTE Fast Model computa-
tions, averaged over about 100 spectra taken on August 31, 2002. For KCARTA and
GENLN2, we plot (NLTE - LTE) calculations, with the TOA at about 85 km. The
main CO2 Σ−Σ, ∆−∆, Π−Π bands are in NLTE while the weak background lines
are in LTE. The Cousin lineshape is used in the simulations.

20.2 TWOSTREAM scattering

Time independent radiative transfer can be described by Schwartzchild’s equation
[?, ?]. As a beam propagates through a medium, the change in diffuse beam intensity
I(ν) in a plane parallel medium is given by

µ
dI(ν)

dka

= −I(ν) + J(ν)

where µ is the viewing angle, ka is the optical depth due to absorption, ν is the
wavenumber and J(ν) is the source function. If the medium is nonscattering, such as
would be expected in a “clear sky,” the source function is simply the Planck emission
B(ν, T) at the layer temperature T , implying that there is absoprtion attenuating the
beam, and Planck emission from the layer adding to the beam. If we assume that
the temperature of the layer is constant, and that the incident intensity is I(ν, 0), the
equation is trivial to solve :

I(ν, ka) = I(ν, 0)e−ka/µ + B(ν, T)(1− e−ka/µ)

1 − e−ka/µ is the emissivity E of the layer, e−ka/µ is the transmission of the layer,
and the reflection R is 0. One can see that R + T + E = 1 in this simple case.

UMBC 165

DRAFT kCARTA Version 1.11,1.12,1.14

2250 2300 2350 2400 2450
−2

0

2

4

6

8

10
NLTE calcs

GENLN
data
kCARTA

Figure 10: Example of a NLTE computation using kCARTA and GENLN2

UMBC 166

DRAFT kCARTA Version 1.11,1.12,1.14

Since the atmosphere is not isothermal, it is best modeled by dividing it up into layers
thin enough that the temperature variation across each layer does not give significant
spectroscopic variation between the layer top and bottom. Having obtained the one
layer solution, it is trivial to propagate the radiation through successive layers and
compute the radiation incident at the instrument.

If the atmosphere is to be modeled more realistically, the effects of clouds and/or
aerosols should be included. As above, there will be a reduction of the diffuse intensity
I(ν, ke) by single scattering and absorption (where ke is the extinction crosssection,
which is the sum of absorption ka and scattering ks cross sections) [?, ?]

µ
dI(ν)

dke

= −I(ν)

The layer Planck emission B(ν, T) still contributes to the source function J(ν). How-
ever, to maintain thermal equilibrium, only the absorptive portion of the extinction is
included, and so the contribution to the source term is now

B(ν, T)
ka

ke

= B(ν, T)

(
1− ks

ke

)

In addition, we need to include scattering of diffuse intensities at other angles µ′
into the viewing angle, which in three dimensions would be given by [?, ?]

dI(ν, Ω, k) = ksµ
∫
4π

I(Ω, Ω′, k)P (Ω, Ω′)d(Ω′)

as well as the scattering of the direct solar beam into the viewing beam [?, ?]

dI(ν, Ω, k) = ksµIsun(Ω, Ωsun, k)P (Ω,−Ωsun)

Here P (Ω, Ω′) is the phase function, which gives the probability of scattering from solid
angle Ω′) to solid angle Ω. The phase function and the extinction properties of the
layer are computed using electromagnetic theory; if one assumes that the particles are
spheres such as would be the case of raindrops in a cloud, then Mie theory [?, ?, ?]
can be used to determine these properties; if one wants to describe the scattering
properties of ice particles in a high altitude cirrus cloud, one could use more elaborate
ray tracing programs to determine these properties.

If we consider the azimuthally symmetric case, the phase function is now [?]

P (µ, µ′) =
1

2π

∫ 2π

0
P (µ, φ; µ′φ′)dφ′

UMBC 167

DRAFT kCARTA Version 1.11,1.12,1.14

Defining the single scattering albedo as ω0 = ks

ks+ka
, and pulling together all of the

above, we finally have the radiative transfer equation to be solved [?, ?]

µdI(ν)
dke

= I(ν)−B(ν, T)(1− ω0)−
ω0

2

∫+1
−1 I(ν, ke, µ′)P (µ, µ′)d(µ′)− ω0

4π
πIsunP (µ,−µsun)e−ke/µsun

This is an integrodifferential equation, which means that obtaining the intensity at
an arbitary viewing angle µ requires knowledge of the intensity at various angles, as one
needs to perform an integral of these intensities, weighted by the phase function. One
way of evaluating the integral is by Gaussian Legendre quadrature, which minimises the
error in the integral by picking a set of points over the [−1, +1] interval. Depending
on the number of quadrature points chosen, we have an n stream solution. Some
scattering packages such as DISORT and CHARTS allow the user to pick the number
of streams used. Others such as RTSPEC have a fixed number of streams. This should
not be a very serious problem, as the large number of scatterers actually smooths out
the phase function [?], and a twostream solution can be quite accurate. The RTSPEC
package includes both the radiative transfer algorithm as well as Mie scattering code to
compute the particle scattering properties (more accurately, the scattering properties
of a distribution of particles). This package, as well as DISORT has been interfaced
with kCARTA.

To be able to compute the radiance when a cloud is present, as well as a solar
beam, we also developed a simple multilayer kTWOSTREAM scattering package. This
combines the twostream speed of RTSPEC and allows the user to include solar beam
scattering (DISORT also allows beam scattering, but is more slow). The atmosphere
is divided up into three regions : clear from Top-Of-Atmosphere to CloudTop, cloudy,
and clear from CloudBottom to Ground. While simple clear sky radiative transfer is
computed in the clear layers, the reflection, transmission, emission and solar compo-
nents at the twostream angles (R, T,E,B) and viewing angle (r, t, e, b) are computed
for each cloudy layer, with the layers being added together if the cloud is a multilayer
one. This gives the overall reflection, transmission, emission and beam scattering
parameters of the cloud.

For both a downlook as well as an uplook instrument, we first compute the back-
ground thermal radiation that makes it down to the surface. When including the cloud
layer in this initial computation, only the absorptive contribution of the cloud extinc-
tion depth is included. If the sun is “on”, a similar computation of the direct solar
beam component at the Earth’s surface is performed. Together with surface emission,
and the reflection of the background thermal and solar radiations, we propagate two
beams back to the cloud bottom : one beam at viewing angle θ and a beam at the

UMBC 168

DRAFT kCARTA Version 1.11,1.12,1.14

twostream angle arccos(1/
√

3). Similarly we compute the radiation incident down-
wards at the cloud top at stream angle arccos(1/

√
3) (and if necessary, the direct

solar beam intensity that is incident at the cloud top, at solar angle θsun).
Having initialised the boundary conditions, we can propagate the up- and down-

going stream radiations (at ±arccos(1/
√

(3))) throught the cloud, after which we can
compute either the upgoing radiation at cloud top, or down going radiation at cloud
bottom, at the viewing angle. The third and final stage is to compute the radiation
to the instrument.

Since the sun creates a natural asymmetry in the radiative transfer, we choose
to merge the cloud layers from top to bottom. Another point to mention is that we
compute the reflection, transmission and emission coefficients for arbitrary viewing
angle, and so a casual check of these coefficients would make it seem that r + t + e
is not energy conserving (i.e. is not 1). However, if one limits the computations to
a viewing angle that corresponds to that of the two streams, then energy is indeed
conserved (R + T + E = 1, the uupercase denoting the coefficients at the stream
angles while the lower case denotes them at arbitrary viewing angle).

To agree with the clear sky outputs of RTSPEC and DISORT, the only layer
temperature variation is exponential-in-optical depth in the cloudy layers; for the clear
layers, we use the average temperature of the layer (which agrees very well with the
linear-in-tau clear layer variation used in the above mentioned packages. However,
depending on the wavenumber region, it is apparent that the authors of the various
scattering packages might need to agree on the exponential-in-tau variation both in
cloudy and clear layers, as this could lead to brightness temperature differences of
upto 0.6 K.

The layer addition is done in much the same fashion as is presented in Goody
and Young [?]. The two stream equations are exactly solved for the layer in question
(note that we define k = 0 at the bottom of the layer, and that there is an implicit
wavenumber dependence ν) :

µ+
dI+

dk
= −I+ + ω0

2
(I+(1 + 3gµ+µ+) + I−(1− 3gµ+µ+))+

Bb(1− ω0)e
βk + ω0

4
ST e−(T−k)/µsun)P (µ+,−µsun)

−µ+
dI−

dk
= −I− + ω0

2
(I+(1− 3gµ+µ+) + I−(1 + 3gµ+µ+))+

Bb(1− ω0)e
βk + ω0

4
ST e−(T−k)/µsunP (−µ+,−µsun)

UMBC 169

DRAFT kCARTA Version 1.11,1.12,1.14

where we define

µ+ upgoing stream angle
µ− downgoing stream angle = −µ+

I+ upgoing stream intensity
I− downgoing stream intensity
k optical depth
T layer total optical depth (0 at bottom, T at top)
ω0 layer single scattering albedo
g layer asymmetry factor
Bb radiance at bottom of layer
Tb temperature at bottom of layer
Tt temperature at top of layer
β 1/T loge(Tt/Tb)
ST solar radiance at top of layer

The homogeneous part of this set of coupled equations is easily solved, giving the
two eigenvalues for the two streams; the inhomogeneous part corresponding to the
layer temperature variation and the solar beam incident on the top of the layer is
also easily solved. The boundary conditions are the incident upward radiance at the
bottom of the layer, and the incident downward radiance at the top of the layer. With
this information, the twostream problem is completely solved for one layer.

For a multilayer cloud, at each spectral point, one could make the intensities
continuous across layer boundaries. The drawback is that a potentially large matrix
(depending on the number of layers the cloud occupies) would need to be inverted
for each spectral point, making computations tedious. An alternative is to rewrite the
exact solutions for one layer in terms of the monolayer reflection R, transmission T ,
layer emission E and beam B coefficients. One can show that R + T + E = 1 in
this case. Having the solution for one layer, we can then add the layers together to
obtain the solution for a multilayer cloud. It is easily appreciated that at each spectral
point the only computations used in this multilayer model are simple multiplications
and additions, instead of matrix inversions.

Using the two stream solution, the problem for arbitrary angles can now be solved.
The radiative transfer equation in this case can be written as (for µ ≥ 0)

which can more easily be written as

µ dI
dk

= −I + J ′(k, I+(k), I−(k))

where J ′(k, I+(k), I−(k)) is the (Eddington’s second solution) source function

UMBC 170

DRAFT kCARTA Version 1.11,1.12,1.14

J ′(k, I+(k), I−(k)) = ω0

2
((I+ + I−) + 3gµµ+(I+ − I−))

Bb(1− ω0)e
βk + ω0

4
ST e−(T−k)/µsun)P (µ,−µsun)

Since we already know the solutions to the twostream radiances I+, I−, this general
equation can be exactly solved as well. The solution can be written as

I(k, µ) = (I(0, µ) + Sup(k)) e−k/µ

where Sup(k) is a term that includes the scattering from the twostream radiances
into the view angle stream, as well as layer emission and scattering from the solar
beam into the viewing angle. A similar set of equations can be written and solved for
µ ≤ 0. Having obtained the one layer solution for arbitrary angles, we can rewrite
the solutions in terms of the more general refection, transmission, emission and beam
coefficients (r, t, e, b) and then add layers together for a complete solution. Note that
because there is scattering from other beams into the viewing beam, r + t + e is not
necessarily equal to one in this general case.

Since the code computes the twostream radiation incident at the top and bottom
of the multicloud layer, as well as the radiation incident at the viewing angle, it can
now propagate the twostream radiances through the cloud in either direction, and use
that to compute the radiation exiting the cloud at the viewing angle. The final stage
of the computation is to propagate the radiation through the remaining clear sky to
the instrument.

21 Significant Changes from v1.10 to v1.11

Main improvement is to introduce NONLTE capability for the 4 um CO2. This will
significantly slow down kCARTA, as a line by line computation is now done on the fly
for the strongest bands, for the necessary layers. Most of this NonLTE code has been
developed using the GENLN3 ideas.

22 Significant Changes from v1.09 to v1.10

Input profile, frequency bound settings and atmosphere definitions can now be set
either through the namelist file, or through an AIRS RTP file. The appropriate libraries
for the RTP file format can be obtained using our website. In addition, we have

UMBC 171

DRAFT kCARTA Version 1.11,1.12,1.14

improved the optical depth computations using non AIRS layering. Also, we have
changed radiance units to mW cm-2 sr-1/cm-1. Spectroscopy has been updated,
using a mixture of improved linemixing parameters and chi functions for the CO2 4
um region, and an improved water vapor continuum in the 6.7 um region. Other than
this, the usual small bug fixes expected inherent with such a large project, were done
as necessary.

23 Significant Changes from v1.08 to v1.09

This version has gone away from any dependancy on the AIRS layering. In order to
do this, klayers.x was rewritten (by Scott Hannon) so that cpblev.f contains the block
data statement of the new layering. layout.f was modified (by Sergio Machado) so
that it outputs outincLAY.param, outpresslevels.param anf outlayers.param with all
necessary info.

The kCARTA subroutines that did the pressure interpolations of the subdivided
or superdivided AIRS layers, have also been modified so that now they do a stright-
forward weighted average layer pressure interpolation. Similarly, subroutine Water-
AmountTempJAC had to be modified as well.

The gaussian integration points/weights are no longer hardcoded by gauss.param.
Instead, subroutine FindGauss(N,raX,raW) is called as necessary N = 40 for accurate
background thermal
= 2 for RTSPEC flux
= 10 for CLEARSKY flux ==

Fluxes for RTSPEC and DISORT can now be computed.
Radiances at pressure level boundaries for RTSPEC and DISORT can be output

kLongOrShort = -1 : output shortened binary file, summarizing nml file

+1 : output longer binary file, which rehashes input nml file

0 : only output data!!! only works for radiance file

(no flux,jac allowed yet)

In the Makefile, bkcarta.x is just the basic version of kCARTA. This can do basic
optical depths and mixed paths, and clear sky radiances. It cannot do fluxes, jacobians
or scattering computations. So the arrays in kcarta.param and scatter.param can be
scaled back to size 1, to allow for this (they have been labelled with the comment
“space saver dimensions.”

UMBC 172

DRAFT kCARTA Version 1.11,1.12,1.14

24 Significant Changes from v1.07 to v1.08

This version now has both DISORT and RTSPEC interfaced to the code, to allow for
scattering computations. When in RTSPEC mode, solar cannot be included either for
up or down looking instruments.

The namelist nmscattr section has been slightly extended, so that
1) we tell the code which scattering model to use
kWhichScatterCode = +1 for TWOSTR
kWhichScatterCode = +2 for RTSPEC
kWhichScatterCode = +3 for DISORT

2) if we are using DISORT, then we have 3 options to speed up the code kScatter
= +1, DISORT will do rad tranfer on kDisStep pts (pts 1,1 + J, 1 +2J, 1 + 3J ...
etc where J=kMaxPts DIV kDisStep The code will then do a linear interpolation of
the chosen pts “interp(raFchosen,raInten) -¿ (raWaves,I)”

kScatter = +2, DISORT will do rad tranfer on kDisStep pts These points are cho-
sen so that they are the lowest optical depth points (in layer closest to gnd) The code
will then do a linear interpolation of the chosen points “interp(raKchosen,raInten) -¿
(raK,I)”

kScatter = +3, DISORT will do rad tranfer on kDisStep pts These points are cho-
sen so that they span the min to max optical depth points (in layer closest to gnd) The
code will then do a linear interpolation of the chosen points “interp(raKchosen,raInten)
-¿ (raK,I)”

Conversely if we are using RTSPEC, then we set the model used (single, eddington
or hybrid) by setting kScatter = +1 , +2 or +3

3) for DISORT to run fast, we can set the number of streams used kDis nstr
(defaulted to 16)

4) for DISORT to run fast, we can set the number of wavenumber points stepped
over kDis Pts (defaulted to 400)

5) Introduced a new parameter into *SCATTR, raExp(j), where j is the cloud
under consideration. If set to 0 and a cloud is “expanded” from “one” layer to layers

UMBC 173

DRAFT kCARTA Version 1.11,1.12,1.14

(p1,p2), the IWP of each of these layers is the same, and sums up to IWP. If set to
other than 0 and a cloud is “expanded” from “one” layer to layers (p1,p2), the IWP
of the individual layers is exponentially decreased roughly as exp(-raExp(j)*p1/p), but
the total IWP remains that set by the user

6) Changed RTSPEC so that clouds that occupy completely different regions, can
be processed. Eg if cloud 1 is an aerosol cloud layer from KCARTA layers 4-5, and
cloud 2 is a cirrus cloud from kCARTA layers 43-46, this is handled by setting a “third”
cloud from layers 6-42, with IWP=0.0

The namelist nmradnce section has had the meanings of settings of some param-
eters slightly altered, in particular raTSpace and iaKSolar for an uplooking instrument
:
For the nonscattering kCARTA algorithm, raTSpace(i) should always be 2.7K or there-
abouts. If iaKSolar(i) = -1 then sun is NOT in FOV, while if iaKSolar(i) = 0,1 then
sun IS IN FOV, at satellite view angle. Thus raKSolarAngle(i) is irrelevant.

For the scattering RTSPEC algorithm, raTSpace(i) should always be 2.7K or there-
abouts. The sun CANNOT be in the FOV, so iaKSolar(i) = -1 is the only allowed
possibility.

For the scattering DISORT algorithm, raTSpace(i) should always be 2.7K or there-
abouts. If iaKSolar(i) = -1 then sun is NOT ON, while if iaKSolar(i) = 0,1 then sun
is on, at arbitrary angle. Thus raKSolarAngle(i) is VERY relevant

The *SCATTR is more general in that it “expands” a cloud according to user
parameters. Eg if cloud is from 259-390 mb, all the user has to do is say cloud has
“1” layer, give the IWP/DME and these two start/stop pressures ... the code will
automatically figure out that there are more than 1 kLAYERS layers used by this
cloud. As long as the cloud has sequential layering, from TOP to BOTTOM, the
code is happy .

25 Significant Changes from v1.06 to v1.07

The major change is to create gasIDs 101 and 102 for the self and foreign water
continuum. The water continuum is computed using a lookup table based on the
CKDv0,2.2,2.3,2.4 codes from LBLRTM. In addition, we have used the HITRAN98
database, along with our latest CO2 spectroscopy, to create a new kCompressed
DataBase.

UMBC 174

DRAFT kCARTA Version 1.11,1.12,1.14

26 Acknowledegement

We wish to thank Dave Edwards of NCAR for allowing us to use his GENLN line-by-line
code to test our kCompressed database against, give us lots of advice on how to write
our code, and allowing us to use some modifications of his subroutines in our code.
In addition he has given us much help regarding the NonLTE computations. We also
wish to thank Dave Tobin of U. of Wisconsin-Madison for help in the CO2 line mixing
spectroscopy, as well as help in determing the water vapor continuum coefficients. We
also thank Istvan Laszlo of U. of Maryland, College Park for answering many questions
regarding DISORT , and Frank Evans of U. of Colorado, for doing the same for
RTSPEC. Thanks also go to Pat Arnott of the Desert Research Institute, for advice
regarding the twostream code. Ji Gou (UMBC) and Szu-Chia Lee (SSEC/U-Wisc)
were amongst the innocent users that reported bugs that required fixes!

UMBC 175

