
RTP Format Specification
and

User’s Guide

Version 2.01

Howard E. Motteler, with updates by Scott Hannon

November 7, 2008

Abstract

We present a data format for driving radiative transfer calcula-
tions and manipulating atmospheric profiles. Calculated and observed
radiances may be included as optional fields, allowing for the repre-
sentation of basic co-location datasets. An implementation as HDF 4
Vdatas is given, including Fortran, C, and Matlab application inter-
faces.

1 Introduction

The “Radiative Transfer Profile” (RTP) format is a data format for sets
of atmospheric profiles, optionally paired with calculated and/or observed
radiances. The format consists of a header record and an array of profile
records. It was derived from the GENLN2 user profile format, extened with
selected AIRS level 2 field definitions. RTP is currently implemented as
HDF 4 Vdatas and as structure arrays in Fortran, C, and Matlab.

1



The format is intended to give a well-defined interface to radiative transfer
codes, allowing for the specification of just the information needed for such
calculations. It allow for modularity of both radiative transfer codes and
of other tools for manipulating profiles, including tools for field selection,
level interpolation and level-to-layer translations, translation of units, and
building composite profiles from multiple sources. The RTP specification
has some flexibility in the field set actually saved to disk, both to save space
and to provide compatibility across file versions. The optional observation
fields may be used to build simple co-location datasets.

2 The RTP format definition

The RTP format consists of a header record with information about all the
profiles in a file, and one or more profiles saved as an array of records. Field
definitions for the header and profile records are given below. These names
are both the names of the Vdata fields and the Fortran, C, and Matlab
structure fields, with the exception of the constituent arrays, as discussed
below. Depending on the application, only a subset of the fields described
here need be present in an RTP file. Fields are matched by field name, and
no particular order for the header or profile fields is assumed.

2.1 Levels and Layers

For level profiles, nlevs is the number of levels and plevs the pressure levels;
the nlevs temperature and constituent fields contain level values. For layer
profiles, nlevs is the number of layer boundaries, plevs is the boundary
pressures, and the nlevs−1 temperature and constituent fields contain layer
values. The palts field, if used, is altitudes for the pressure levels, for either
level or layer profiles.

The header field ptype flags the profile as being a level profile, a layer
profile, or a profile using AIRS pseudo-layers, with the following values.

1. level profile LEVPRO = 0
2. layer profile LAYPRO = 1
3. AIRS pseudo-layers AIRSLAY = 2

A convention that lower indices correspond to lower pressures is suggested
but not required. The header fields pmax and pmin are intended to hold the

2



RTP Header Fields

field name short description data type units
---------- ------------------ ----------- -------
ptype profile type scalar int32 see note [1]
pfields profile field set scalar int32 see note [2]

pmin min plevs value scalar float32 millibars
pmax max plevs value scalar float32 millibars
ngas number of gases scalar int32 [0,MAXGAS]
glist constituent gas list ngas int32 HITRAN gas ID
gunit [3] constituent gas units ngas int32 gas unit code

pltfid platform ID scaler int32 platform code
instid instrument ID scaler int32 instrument code
nchan number of channels scalar int32 count
ichan channel numbers nchan int32 [0,MAXCHAN]
vchan channel center freq. nchan float32 cm^-1
vcmin channel set min freq. scalar float32 cm^-1
vcmax channel set max freq. scalar float32 cm^-1

iudef user-defined array MAXIUDEF int32 undefined
itype user-defined integer scaler int32 undefined

Notes:

[1] ptype values are
1. level profile LEVPRO = 0
2. layer profile LAYPRO = 1
3. AIRS pseudo-layers AIRSLAY = 2

[2] RTP profile fields are organized in five groups
1. profile data PROFBIT = 1
2. calculated IR radiances IRCALCBIT = 2
3. observed IR radiances IROBSVBIT = 4

For example, a profile with both calculated and observed IR
radiances would have pfields = PROFBIT + IRCALCBIT + IROBSVBIT

[3] For suggested gas units code see file ‘‘gas_units_code.txt’’

3



Profile Fields -- Surface Data

field name short description data type units
---------- ------------------ ----------- -------
plat profile latitude scalar float32 [-90 to 90] deg.
plon profile longitude scalar float32 [-180 to 360] deg.
ptime profile time scalar float64 TAI

stemp surface temperature scalar float32 Kelvins
salti surface altitude scalar float32 meters
spres surface pressure scalar float32 millibars
landfrac land fraction scalar float32 [0 to 1]
landtype land type code scalar int32 land code

wspeed wind speed scalar float32 meters/sec

nemis [1] number of emis. pts scalar int32 [0,MAXEMIS]
efreq [1] emissivity freq’s nemis float32 cm^-1
emis surface emissivity nemis float32 [0 to 1]
rho surface reflectance nemis float32 [0 to 1]

Notes:

[1] The nemis and efreq data is also used with cloud emis & rho.

4



Profile Fields -- Atmospheric Data

field name short description data type units
---------- ------------------ ----------- -------
nlevs number of press lev’s scalar int32 [0,MAXLEV]
plevs pressure levels nlevs float32 millibars
palts level altitudes nlevs float32 meters
ptemp temperature profile nlevs float32 Kelvins
gas_<i> [1] gas amount nlevs float32 HEAD.gunit
gtotal total column gas amount ngas float32 undefined
gxover gas crossover press ngas float32 millibars
txover temp crossover press scalar float32 millibars
co2ppm CO2 mixing ratio scalar float32 PPMV

Notes:

[1] There is one field here for each constituent in a file; the
constituents are listed in the header field glist. The Fortran
API presents this data as [ngas x nlevs] array ‘‘gamnt’’.

5



Profile Fields -- Cloud Data

field name short description data type units
---------- ------------------ ----------- -------
clrflag clear flag scalar int32 [0,1] or clear code

ctype [1] cloud type code scalar int32 cloud code
cfrac [2] cloud fraction scalar float32 [0 to 1]
cemis [2] cloud top emissivity nemis float32 [0 to 1]
crho [2] cloud top reflectance nemis float32 [0 to 1]
cprtop [2] cloud top pressure scalar float32 millibars
cprbot cloud bottom pressure scalar float32 millibars
cngwat cloud non-gas water scalar float32 g/m^2
cpsize cloud particle size scalar float32 microns
cstemp [2] cloud surface temp scalar float32 Kelvins

ctype2 [1] cloud2 type code scalar int32 cloud code
cfrac2 [2] cloud2 fraction scalar float32 [0 to 1]
cemis2 [2] cloud2 top emissivity nemis float32 [0 to 1]
crho2 [2] cloud2 top reflectance nemis float32 [0 to 1]
cprtop2 [2] cloud2 top pressure scalar float32 millibars
cprbot2 cloud2 bottom pressure scalar float32 millibars
cngwat2 cloud2 non-gas water scalar float32 g/m^2
cpsize2 cloud2 particle size scalar float32 microns
cstemp2 [2] cloud2 surface temp scalar float32 Kelvins
cfrac12 cloud1+2 fraction scalar float32 [0 to 1]

Notes:

[1] For suggested cloud type codes see file ‘‘cloud_code.txt’’

[2] These cloud fields may instead be used for alternate surfaces.

6



Profile Fields -- Common Radiance Data

field name short description data type units
---------- ------------------ ----------- -------
pobs observer pressure scalar float32 millibars
zobs observer height scalar float32 meters
upwell radiation direction scalar int32 1=up, 2=down
scanang IR scan/view angle scalar float32 [-90 to 90] deg.
satzen IR zenith angle scalar float32 [0 to 180] deg.
satazi IR azimuth angle scalar float32 [-180 to 180] deg.

solzen sun zenith angle scalar float32 [0 to 180] deg.
solazi sun azimuth angle scalar float32 [-180 to 180] deg.
sundist sun-Earth distance scalar float32 meters
glint glint distance scalar float32 meters

Profile Fields -- Radiance Data

field name short description data type units
---------- ------------------ ----------- -------
rlat radiance obs lat. scalar float32 [-90 to 90] deg.
rlon radiance obs lon. scalar float32 [-180 to 360] deg.
rtime radiance obs time scalar float64 TAI

findex file (granule) index scalar int32 index
atrack along-track index scalar int32 index
xtrack cross-track index scalar int32 index
ifov field of view index scalar int32 index

robs1 observed IR rad. nchan float32 mW/m^2/cm^-1/str
calflag calibration flag nchan uchar8 see text
robsqual radiance quality scalar int32 undefined
freqcal frequency calibration scalar float32 undefined

rcalc calculated IR rad. nchan float32 mW/m^2/cm^-1/str

7



Profile Fields -- User Defined Data

field name short description data type units
---------- ------------------ ----------- -------
pnote profile annotation MAXPNOTE char8 undefined
udef user-defined array MAXUDEF float32 undefined
iudef user-defined array MAXIUDEF int32 undefined
itype user-defined integer scalar int32 undefined

max and min level pressures over all profiles, or some upper and lower bound
on these values.

2.2 Constituents

Constituent fields are named with their HITRAN gas ID’s, with gas 1 water,
gas 2 CO2, and so on. A list of HITRAN gas ID’s is given in an appendix.
The header field glist gives a list of the constituent ID’s for the constituents
present in the file. The default constituent unit is PPMV.

The Fortran and C application interfaces represent constituents as a 2D
array gamnt whose rows are layers and whose columns are gas ID index,
rather than as a set of separate fields gas <i> as they are actually saved in
the file; the gas <i> fields are the columns of the 2D gamnt array.

There are a wide variety of constituent units in current use; in consider-
ation of this we have added a gunit array to the header, assigning a unit
code for each constituent and allowing at least the potential for automatic
conversions. These unit codes are given in gas units code.txt. This file
is included in the RTP distribution, but the most up-to-date version can be
found in the SARTA fast radiative transfer package.

Note that only a small subset of possible constituents are typically recog-
nized and processed by fast models for radiative transfer calculation, typically
water, ozone, and perhaps methane, CO2, and CO; see the documentation
of the relevant radiative transfer code for more information.

8



2.3 Field Sets and Sizes

Individual profiles may have varying pressures levels, emissivity, reflectance,
and surface brightness temperature sets. All profiles in a file are assumed to
have the same constituent set, and if radiances are present all profiles have
the same channel set.

RTP fields may be scalars or one-dimensional arrays; this is a limitation
of the underlying HDF Vdata format. Most arrays have an associated size
field. If this size field is in the header, as in the case of ngas or nchan then it
is assumed to be the same for all profiles, while if the size field is in a profile,
as in the case of nlevs or nemis, then it applies only to that profile.

The size of array fields in the RTP HDF Vdata implementation may
in some cases be bigger than what is specified by the associated size field.
This can happen because the HDF Vdata format requires a single size be
associated with each field, which then has to be at least the max of all the
actual field sizes. Because of this, when a size-field is avaliable its value
should be used instead of the possibly larger Vdata field size.

The field set for RTP is not required to be fixed to precisely the fields
listed here. Fields are matched by field name, and no particular order for
the header or profile fields is assumed

2.4 Field Groups

The pfields field in the header is used by the C/Fortran API to control
what which field groups will be written to a file. Profile fields are organized
as five groups,

1. profile data PROFBIT = 1

2. calculated radiances IRCALCBIT = 2

3. observed radiances IROBSVBIT = 4

These groups can occur in any combination. The associated numbers are
bit fields, set in pfields if the associated data is present in the file. Thus
for example profile data with calculated and observed radiances would be
represented as pfields = PROFBIT + IRCALCBIT + IROBSVBIT.

Note that we can have nchan > 0 and channel data in the header without
having either calculated or observed radiances in a file, to specify a set of
channels whose radiances are to be calculated later.

9



2.5 HDF Attributes

Attributes are associated either with the header or with the profile record
set, and have three parts: the field the attribute is associated with, the
attribute name, and the attribute text. In addition to proper field names,
the field name “header” is used for general header attributes, and “profile”
for general profile attributes.

RTP attributes should typically include such information as title, author,
date, and at least a brief descriptive comment. This general information
should be set as attributes of the header record. Note that the Fortran/C API
uses the 2D gamnt array for constituents; this is not actually a Vdata field,
and so can not take an attribute. Attributes may be attached to individual
constituents with their gas <i> names, where <i> is the HITRAN gas ID.

3 Application Interfaces

3.1 The Fortran and C API

The Fortran API consists of four routines: rtpopen, rtpread, rtpwrite,
and rtpclose. Documentation for these is included in an appendix. The
Fortran API uses static structures whose fields, with a few exceptions noted
below, are the same as the RTP fields defined above. Normally, only a subset
of the Fortran structure fields will be written, with the header field pfields

and the header size fields used to determine what actually goes into a file.
When reading data, if a file contains header or profile fields not in the Fortran
structure definition, they are simply ignored. Fields that are defined in the
Fortran structure but are not in a file are returned as “BAD”, or with the
first element BAD, for vectors, while missing size fields are returned as zero.

Attributes are passed to and from the Fortran API in the RTPATTR struc-
ture array. The records in this array have three fields: fname, the field
name the attribute is to be associated with, aname, the attribute name, and
atext, the attribute text. The header attribute field name should be either
“header”, for a general attribute or comment, or a particular header field
name. Similarly, the attribute profile field name should be either “profiles”
or a specific profile field. Attribute strings need to be null-terminated, with
char(0), and the record after the last valid record in an attribute set should
have fname set to char(0). See ftest1.f for and ftest2.f examples of reading,
writing, and updating attributes.

10



The Fortran structures differer from the Vdata fields in two ways. First,
instead of a gas <i> profile field for each constituent, the Fortran API
uses a single array gamnt(MAXLEV,MAXGAS) to pass constituent amounts; the
gas <i> fields from the HDF file are the columns of this array. Second, the
Fortran/C RTP header structure includes the following max size fields, which
are not actually written to the Vdata header.

mlevs max number of levels scalar int32 [0,MAXLEV]

memis max num of emis pts scalar int32 [0,MAXEMIS]

On a read, these fields are set to the associated profile Vdata field sizes.
On a write, they are used to to set the size of the associated Vdata profile
fields. They can simply be set to the MAX limits, or to zero if the fields are
not used; but using an actual max for the profile set, particularly for mlevs,
can give a significant space savings.

A makefile is supplied to build the RTP API routines as a library file
librtp.a. A Fortran demo makefile, “Makefile.f77” is also provided, to compile
the F77 demo programs ftest1.f and ftest2.f and link them with the RTP
libraries.

3.2 The Matlab API

The RTP Matlab implementation is a fairly direct mapping between Matlab
structure arrays and HDF 4 Vdatas. A read will only return those fields that
are in the HDF Vdata, and a write will only write the fields in the Matlab
structure. The Matlab RTP API is available as part of the ASL package
“h4tools”; see the README file there for more information. The main two
routines are “rtpread.m” and “rtpwrite.m”, which are a fast and efficient
reader and writer of RTP files.

3.3 Data Types

Most RPT fields are either 32-bit integers or 32-bit floats, as noted in the
field tables, with the exception of the time fields which are 64-bit floats, and
the pnote and calflag fields, which are character arrays. The HDF C types
are defined in the HDF include file “hdf.h”.

HDF type codes HDF C types Fortran types
DFNT_INT32 int32 integer*4

11



DFNT_FLOAT32 float32 real*4
DFNT_FLOAT64 float64 real*8
DFNT_CHAR8 char8 character*<n>
DFNT_UCHAR8 uchar8 character*<n>

12



NAME

rtpopen -- Fortran interface to open RTP files

SUMMARY

rtpopen() is used to open an HDF RTP ("Radiative Transfer Profile")
file for reading or writing profile data. In addition, it reads or
writes RTP header data and HDF header and profile attributes.

FORTRAN PARAMETERS

data type name short description direction
--------- ----- ----------------- ---------
CHARACTER *(*) fname RTP file name IN
CHARACTER *(*) mode ’c’=create, ’r’=read IN
STRUCTURE /RTPHEAD/ head RTP header structure IN/OUT
STRUCTURE /RTPATTR/ hfatt RTP header attributes IN/OUT
STRUCTURE /RTPATTR/ pfatt RTP profile attributes IN/OUT
INTEGER rchan RTP profile channel OUT

VALUE RETURNED

0 if successful, -1 on errors

INCLUDE FILES

rtpdefs.f -- Fortran header, profile, and attribute structures

DISCUSSION

The valid open modes are ’r’ to read an existing file and ’c’ to
create a new file.

HDF attributes are read and written in an array of RTPATTR
structures, with one structure record per attribute. Attributes
should be terminated with char(0), and are returned that way, for
a read. The end of the attribute array is flagged with a char(0)
at the beginning of the fname field.

13



NAME

rtpread -- Fortran interface to read an RTP profile

SUMMARY

rtpread reads a profile from an open RTP channel, and returns
the data in the RTPPROF structure. Successive calls to rtpread
return successive profiles from the file, with -1 returned on
EOF.

FORTRAN PARAMETERS

data type name short description direction
--------- ----- ----------------- ---------
INTEGER rchan RTP profile channel IN
STRUCTURE /RTPPROF/ prof RTP profile structure OUT

VALUE RETURNED

1 (the number of profiles read) on success , -1 on errors or EOF

14



NAME

rtpwrite -- Fortran interface to write an RTP profile

SUMMARY

rtpwrite writes an RTP profile, represented as the contents
of an RTPPROF structure, to an open RTP channel. Successive
calls write successive profiles.

FORTRAN PARAMETERS

data type name short description direction
--------- ----- ----------------- ---------
INTEGER rchan RTP profile channel IN
STRUCTURE /RTPPROF/ prof RTP profile structure IN

VALUE RETURNED

0 on success, -1 on errors

15



NAME

rtpclose -- Fortran interface to close an RTP open channel

SUMMARY

rtpclose finishes up after reading or writing an RTP file,
writing out any buffers and closing the HDF interface

FORTRAN PARAMETERS

data type name short description direction
--------- ----- ----------------- ---------
INTEGER rchan RTP profile channel IN

VALUE RETURNED

0 on success, -1 on errors

16



NAME

rtpinit -- initialze RTP profile and header structures

SUMMARY

rtpinit initializes RTP profile structures with some sensible
default vaules, and is used when creating a new profile set; it
should generally not be used when modifying existing profiles.

rtpinit sets all field sizes to zero, and all data values to
"BAD", so that only actual values and sizes need to be written

FORTRAN PARAMETERS

data type name short description direction
--------- ----- ----------------- ---------
STRUCTURE /RTPHEAD/ head RTP header structure OUT
STRUCTURE /RTPPROF/ prof RTP profile structure OUT

VALUE RETURNED

rtpinit always returns 0

17



NAME

rtpdump -- basic RTP dump utility

USAGE

rtpdump [-achp] [-n k] rtpfile

OPTIONS

-a dump attributes
-c dump RTP channel info
-h dump header structure
-p dump profile structure
-n <k> select profile <k> for channel or profile

structure dumps; the first profile is 1

BUGS

the output is from debug and error dump routines and is not very
fancy; the -p option only prints a subset of profile fields

18



HITRAN Gas List
---------------

Gases from the 1998 HITRAN line database

1 = H2O (water vapor) 17 = HI
2 = CO2 18 = ClO
3 = O3 (ozone) 19 = OCS
4 = N2O 20 = H2CO
5 = CO 21 = HOCl
6 = CH4 (methane) 22 = N2 (nitrogen)
7 = O2 (oxygen) 23 = HCN
8 = NO 24 = CH3Cl
9 = SO2 25 = H2O2
10 = NO2 26 = C2H2
11 = NH3 (ammonia) 27 = C2H6
12 = HNO3 28 = PH3
13 = OH 29 = COF2
14 = HF 30 = SF6
15 = HCl 31 = H2S
16 = HBr

Gases represented only by cross-sections

51 = CCl3F (CFC-11) 58 = C2Cl2F4 (CFC-114)
52 = CCl2F2 (CFC-12) 59 = C2ClF5 (CFC-115)
53 = CClF3 (CFC-13) 60 = CCl4
54 = CF4 (CFC-14) 61 = ClONO2
55 = CHCl2F (CFC-21) 62 = N2O5
56 = CHClF2 (CFC-22) 63 = HNO4
57 = C2Cl3F3 (CFC-113)

19


