

AIRS fast [forward model](#page-10-0) for version6

S. Hannon

AIRS fast forward model for version6

Larrabee Strow, Scott Hannon, Sergio Machado

Atmospheric Spectroscopy Laboratory (ASL) Physics Department and the Joint Center for Earth Systems Technology

University of Maryland Baltimore County (UMBC)

June 11, 2009

2) Introduction

AIRS fast [forward model](#page-0-0) for version6

- AIRS v6 fast model completed May 2008
- Lastest code delivered to Eric Maddy in late May 2009
- . Basic "clear sky" code very similar to v5 code
- **•** Two new features/capabilities for v6:
- 1) variable channel frequencies
- 2) cloudy-sky radiance using black and/or transmissive clouds
- Implementation issues and options

3) Overview of basic v6 AIRS fast model

AIRS fast [forward model](#page-0-0) for version6

S. Hannon

The basic v6 AIRS fast model differs from v5 as follows

- Used HITRAN 2004 database (with updates thru 2007) to update water, ozone, and nitric acid transmittances. Other gases unchanged.
- Two separate fast models for pre-Nov.2003 and post-Nov.2003 with different SRF fringes (aka channeling spectra).
- \bullet Pre-Nov. 2003: -13.0, -14.0 um y-offset, and 370 ppm CO2
- Post-Nov.2003: $-13.0, -14.0, -15.0$ um y-offset, and 385 ppm C_{O2}
- Only minor algorithm changes compared to v5: add new 5th CO2 and new 7th non-LTE coefficient/predictor.
- Revised optical depth tuning; very similar to v5 except for 2200 cm^{-1} region N2O and 1300 cm^{-1} region CH4.

Δ SI 4) Variable channel frequencies

AIRS fast [forward model](#page-0-0) for version6

S. Hannon

The grating model y-offset of the AIRS channels drift back and forth roughly 0.4 um per orbit, and 0.3 um per seasonal cycle. There is also a slowly decaying monotonic drift of 0.2 (2002) to 0.05 (2008) um per year. A 1 um shift corresponds to a frequency change of 8.3 parts per million frequency, so we are dealing with relatively small changes. What to do about the drift is a topic for another day. Here we only discuss how the fast model channel frequencies can be adjusted.

- Fast model databases have been generated for multiple y-offsets
- Linear interpolation in y-offset is possible between databases. That is, the databases themselves may be interpolated via a simple weighted sum average.
- \bullet With databases D1 and D2 at y-offsets Y1 and Y2, we calculate a new temporary database D for arbitrary y-offset Y as

 $D = D1 * (Y - Y2)/(Y1 - Y2) + D2 * (Y - Y1)/(Y2 - Y1)$

• This equation works even if Y varies by channel

ΔS_I 5) Cloudy-sky fast model variant

AIRS fast [forward model](#page-0-0) for version6

S. Hannon

A cloudy-sky variant of the fast model has been developed to allow fast computions of radiances for fields of view containing up to two black and/or transmissive/scattering clouds.

- \bullet A "black" cloud is a surface specified by cloud top: a) pressure, b) temperature, c) emissivity, d) reflectivity.
- \bullet A "transmissive/scattering" cloud is a vertical slab specified by: a) cloud top pressure, b) cloud bottom pressure, c) particle type, d) particle size, e) total cross sectional mass.
- In addition to the above, for all clouds we need to specify a cloud fraction. In the case of two clouds, we also need to specify a third cloud fraction for the overlap of the two clouds.
- The total radiance is computed as a cloud fraction weighted sum of four radiances contributions: clear, cloud1-only, cloud2-only, and both-clouds.
- With a code written to maximize efficiency, a typical cloudy-sky computation is only a few tens of percent slower than clear-sky.

6) Implementation issues: frequency shift

AIRS fast [forward model](#page-0-0) for version6

- Applying frequency shift adjustments to AIRS radiance calculations is simple.
- If we limit ourselves to one frequency adjustment per AIRS granule, then the database interpolation is probably best done outside the RTA code as a pre-processing step.
- If we want to allow frequency adjustment on a per FOV basis, then the database interpolation should be done inside the RTA code. A variant of the clear-sky SARTA code demonstrates how to do this. Code-wise it is relatively easy to implement, but it increases memory usage and increases runtime each time y-offset changes.
- Current we do not have a frequency-shifting cloudy SARTA (because need for it is dubious), but it is feasible.

7) Implementation issues: cloudy RTA

AIRS fast [forward model](#page-0-0) for version6

- The cloudy-sky code is as designed for simplicity and speed of calculations rather than accuracy. However, the need to efficiently compute up to four separate radiance contributions results in a code significantly more complex than for clear-sky.
- Getting the cloudy-sky RTA into the existing L2 code is a major job. Chris Barnet et al was tasked with this for v6, but there have been funding delays, and success is uncertain.
- The cloudy-sky code currently exists as a variant of our SARTA package. We do not understand the PGE well enough to say whether or not it might be feasible to use SARTA more-or-less as is as a callable stand-alone program somewhere within the PGE.
- The long term goal of having the cloudy-sky code in the PGE is to help improve the quality and yield of standard products under dusty and thin cirrus conditions.
- Presently unsure how to do this in the PGE's cloud-clearing based retrieval algorithm. Sergio discuss two possibilities in the following slides.

ASI 8)

AIRS fast [forward model](#page-0-0) for version6

- Had meeting in Sept 2008 with Joel, Chris and John
- Talked about implementing the SARTA-scattering RTA
- Also talked about how this would benefit AIRS products

$|AS|$ 9) Within L2 retrieval : More ambitious, but with more benefits

AIRS fast [forward model](#page-0-0) for version6

- include dust effects in the middle of the retrieval algorithm
- use GOCART height database to guess dust layer height
- use 2 um effective particle size
- (or retrieve dust layer height as well?)
- Improve AIRS retrieval stemp, $T(z)$, $RH(z)$ products by including dust as a retrieved variable on FOVS where dust flag triggers
	- easiest done on cloud cleared radiances? (AIRS STM May 09)
	- start with "known" surface emissivity
	- BUT nonuniform dust will be removed from the radiances, so this could lead to physically inaccurate dust optical depths
- This would improve OLR dust forcing estimates for climate
- And can do similar retrievals for eg thin cirrus clouds (ie move away from "black cloud" assumption towards more realistic models).

$\begin{bmatrix} 1 & 1 & 10 \\ 1 & 1 & 1 \end{bmatrix}$ Post processing product : Easier, but limited benet

AIRS fast [forward model](#page-0-0) for version6

S. Hannon

Do the L2 retrieval as is, but for FOVs that are dust contaminated (from dust flag), tack on an additional retrieval at the end. This means

- \bullet the dust retrieval will have the L2 retrieved profile to start with
- o over ocean, default to sea emissivity (over land use eg U. Wisc or Joel's land emissivity database)
- use GOCART height database to guess dust layer height
- use 2 um effective particle size
- o go ahead and do a retrieval using the OBSERVED radiances
- this would only provide a Dust Optical Depth product (for comparisons against eg MODIS)

11) Appendix: RTA accuracy/errors

AIRS fast [forward model](#page-0-0) for version6

- Reduced angle dependence of CO2 errors in shortwave channels; otherwise errors are similar to v5.
- Added CO2 dependence of non-LTE for v6; very minor effect.
- **•** Frequency shift modelling errors are negligible compare to the accuracy of our estimate of the true frequencies.
- Transmissive/scattering clouds emit radiance at the layer mean temperature of each layer containing the cloud. This means a very opaque cloud will appear to emit at the temperature of the top layer containing the cloud, rather than at an interpolated temperature corresponding to the exact cloud top pressure.
- **•** Transmissive/scattering clouds use a very crude scattering model. This is especially true in the shortwave, and even more so with regard to daytime solar scattering.