Optimal Estimation Retrievals of Decadal Variability

from AIRS Radiance Time Derivatives and
Comparison to Re-Analysis Products

Sergio DeSouza-Machado, L. Larrabee Strow, Andrew Tangborn, and
Chris Hepplewhite

Department of Physics, JCET, University of Maryland Baltimore County (UMBC)

CALCON Meeting
August 2015
Utah State

Acknowledgements:



Overview
[ Jele]e]

Overview

@ Hyperspectral Infrared (IR)

e 2000 to 8000+ spectral channels of earth’s thermal emission, ~

12-20 km footprints

e 45° swaths, high inclination sun-synchronous orbit, appox 16 day
repeat period
Main purpose: Numerical Weather Prediction (NWP)
Spectra details allow discrimination of different processes
Started with NASA EOS-AIRS in 2002
Four hyperspectral sensors now operating (Aqua-AIRS, METOP
IASI-1 and IASI-2, SNPP-CrIS) with substantial operating overlap,
offer prospects for > 25 year climate trending measurements.

We propose to demonstrate use of optimal estimation applied to
temporal and spatial averaged radiance data, for determining trends of
climate sensitive geophysical variables. This can be applied to
multi-sensor records as long as a continuous observational record is
available, and provides more straightforward error estimations when
compared to level-2 derived climate trends.
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Hyperspectral Polar Orbiting Sounders

Need ~ 0.01K/year long-term stability
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CLARREO approach: no overlap, high accuracy
This approach: sensor overlap, but still require stability

BUT: operational sensors also have slightly different spectral response (ILS)



Overview
[e]e] o]

Sensitivity to Geophysical Variables
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Temperature profile

Water vapor profile

Surface temperature and emissivity

Cloud height (top), phase, particle size. (2+ degrees of freedom?)
Minor gases: CO2, N2O, O3, CH4, CO, HNO3, Freons, HDO, SO,
Particulates: Dust (including height), volcanic ash

With additional data (reanalysis): long-wave cloud radiative forcing

NOAA and EUMETSAT both committed to 25+ year time series:

Afternoon orbit: 2002 — 2027+
Morning orbit: 2007 — 7777 (> 25 years)
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Basic approach

@ Process data in radiance space as long as possible to ensure
traceable accuracy.

@ Ensure maximum sampling to minimize scene dependencies.

@ In this study: use nadir subset FOVs , bin in 36 latitude zones
averaged over 16 days.

@ Determine sensor stability.
@ Connect multiple sensors in the spectral radiance doman.

@ OE utilizes some 1400 spectral channels, fits to a linear plus
seasonal sinusoid, assumes zero a-priori.

@ OE smoothing of profile usually done using a-priori co-variance, here
done empirically using Tinkonov 1st derivative

@ Instrument error (from last talk 0.005 K) and off-diagonal
instrument error covariance less important.
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Ensuring Traceable Accuracy: A New Approach

Standard Approach
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Repeat for each instrument: AIRS, CrlS, IASI
Ensure continuity among products
Repeat
the above process for each instrument, merge

products that used different forward models,

with different spectral resolutions.

Proposed Approach
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The standard approach L2 retrieval

@ Very difficult to assign errors, especially for small trends
@ Computationally expensive, cannot re-process at will.

@ Significant component of a-priori (in AIRS neural net) that also uses
cloud clearing - with additional uncertainty.

o Standard L2 typically exhibits sampling limitations.

@ Re-analysis products very good for some variables, errors hard to tie
down. Can have significant sampling biases, bias corrections tied to
sondes, GPS, less to hyperspectral IR. Cloud forcing accuracy
uncertain.

@ In our approach: answer the technical questions in radiance space,
then convert to a geophysical trend.



Stability
[1e]

AIRS Stability: Using Clear Scene Subset

o Clear ocean scenes, binned by latitude daily for 10 years (hot PDFs).

o Create simulation set from ERA using forward model (SARTA)

o Determine 10-year linear BT rate (dBT /dt) from fit to 4-term sine series
(seasonal and harmonics) + constant + linear rate.

Sample Linear BT Rates and Fitting Errors
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AIRS Stability

Stability
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Compare OEM retrievals from clear subset to CO» and SST climatologies.

AIRS Retrieved CO, Growth Rate vs

In-Situ: 2ppm ~0.06K

AIRS Retrieved SST vs Tropical SST

Climate Data Records
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10-Year Trends in AIRS All-Sky Radiances

SST Rates (ERA) AIRS AII Sky: 1231 cm™*
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o Units are K/year linear rate over 10 years

@ Right: AIRS 1231 cm~! window channel, Surface emission + cloud
forcing

@ 10 years too short: spatial variations dominated by
ENSO/inter-annual variability

o But, global averages might be interesting.
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Globally Averaged AIRS 10-Year All-Sky BT Rates
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Global Averaged AIRS 10-Year All-Sky BT Rates

Comparison to All-Sky Simulations, but only changing CO> + CHs.
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Little mid-trop AT, decrease in mid-trop H,O ~ 0.1%, surface T +0.02K. Main
observation: Stratospheric cooling? Measurement error ~ 0.003K?, geophysical
variability higher.
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UMBC Temperature vs ERA-Interim, MERRA, AIRS L3

Retrievals from 10-Year zonal mean linear radiance rates (colorbar = Kelvin)
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UMBC Water Vapor vs ERA-Interim, MERRA, AIRS L3

Retrievals from 10-Year zonal mean linear radiance rates (colorbar = fraction)
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Uncertainty estimates of the UMBC linear trend

The uncertainty reflects the loss of sensitivity with altitude, and the error
covariance matrices chosen, and at lower altitudes is dominated by inter-annual

variability.
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PDF Measurement Approach

Do not average all-sky radiances.
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@ Bin (create PDFs) versus variable
related to cloudiness

o | used 1231 cm™" channel B(T):
clearest window channel

1000 Wo ot _‘)2500 2500 @ Data Set: 10 years of AIRS, only
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stable versus time
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Conclusions

@ Operational sensors have the stability needed for climate

@ In-orbit overlap should allow stitching records with uncertainty
equivalent to 0.1K/decade. Some risk.

@ Demonstrated re-analysis level results with all-sky retrievals derived
from radiance trends

o PDF approach may lower sensitivity to instrument accuracy for some
variables

@ This approach allows a much more rigorous error analysis needed for
community acceptance of satellite derived climate change.
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