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Overview

o Hyperspectral Infrared (IR)

e 2000 to 8000+ spectral channels of earth’s thermal emission, ~
12-20 km footprints

e Main purpose: Numerical Weather Prediction (NWP)

o Highly correlated with OLR, but spectra allow discrimination of
processes

o Started with NASA EOS-AIRS in 2002

e Four hyperspectral sensors now operating (Aqua-AIRS, METOP
IASI-1 and IASI-2, SNPP-CrIS) providing great opportunity for
inter-calibration studies.

Approach taken for NWP applications may be problematic for
climate-level records.

We propose a new approach to produce long term climate records with
hyperspectral sounders with quantifiable error characteristics and
uncertainties. Stand-in for long-wave part of CLARREO, now delayed
until early 2020's.
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Hyperspectral Polar Orbiting Sounders

Need ~ 0.01K/year long-term stability

T T T T 06
300 7&';8 1 ||\ calibration Accuracy (95% Confidence)
Cris-Sinc 3 \ ——000K Perfect Obs
GriS-HiRes-Sinc e W\
Sos W ——0.03K
‘g \ \ ——0.06K CLARREO
250 + 3 \\ —0.12K
® 04 \\ —o0.18K
E3 \\
‘ < — -0.24K
X ] \ — -0.30K | IASVAIRS/CHS
£ 200 ~ B § 03 A\ 0.36K
e | £ \
o [ >
£02
£
150 1 8
S 01 | Perfect Obs
°
H CLARREO
=
100 ] 00 . . . .
[ 10 20 30 40 50
L - - L Length of Observed Trend
1000 1500 2000 2500

Wavenumber (cm™')

CLARREO approach: no overlap, high accuracy
This approach: sensor overlap, but still require stability

BUT: operational sensors also have slightly different spectral response (ILS)
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Sensitivity to Geophysical Variables
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Temperature profile

Water vapor profile

Surface temperature and emissivity

Cloud height (top), phase, particle size. (2+ degrees of freedom?)
Minor gases: CO2, N2O, O3, CH4, CO, HNO3, Freons, HDO, SO,
Particulates: Dust (including height), volcanic ash

With additional data (reanalysis): long-wave cloud radiative forcing

NOAA and EUMETSAT both committed to 25+ year time series:

Afternoon orbit: 2002 — 2027+
Morning orbit: 2007 — 7777 (> 25 years)
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Liens on Producing ESDR/CDRs

@ Afternoon orbit (U.S.)

Two different agencies (NASA is addressing this!)
o AIRS very different from CrlS and IASI (see below)
o Calibration experts for AIRS are “aging”

o Retrieval approaches in flux, even after 12+ years

@ Morning orbit (EUMETSAT)

o Starts almost five years later than A.M orbit record
e Two more agencies: EUMETSAT and CNES

© Common Liens

o Data volume too large for individual researchers to use

o Retrieval products developed for NWP, not for climate monitoring.

o Example: The AIRS L2 retrievals do not provide radiance closure.
Non-linear approaches (Neural Net, Cloud Clearing) difficult to
characterize.
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Ensuring Traceable Accuracy: A New Approach

Standard Approach Proposed Approach
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Repeat for each instrument: AIRS, CrlS, IASI Retrieval < A Single
Ensure continuity among products Forward Model

Repeat the above process for each instrument,

merge products that used different forward A
models, with different spectral resolutions. Climate
Products
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PDF Measurement Approach

Do not average all-sky radiances.

az0f ‘ ‘ ‘ /‘m'ﬂ’(“' Retain more information: PDF rates,
f N’ ‘ ! / not Radiance Rates
3001 1

@ Averaging clear with cloudy scenes
destroys information

280

£ 260f

@ Bin (create PDFs) versus variable
related to cloudiness

o | used 1231 cm™" channel B(T):
clearest window channel

1000 Wo ot _‘)2500 2500 @ Data Set: 10 years of AIRS, only
FOVs on each side of nadir

ooee . @ Bins of B(T) 1231 cm™?, from
14000 Amazonia PDF
190:1:320K

@ Mean BT spectra in each bin are
stable versus time

2401

2201

12000

. 10000
8000)
6000)

@ All the information is in the PDFs
in each bin

4000

2000)

T80 200 220 240 260 280 300 320 340
1231 B(T) in K



ILS Conversion
00000000000

AIRS Llc: Mismatch due to ILS Differences

Sampling of AIRS vs CrlS ILS B(T) error using just v interpolation
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AIRS to CrlS translation

@ let ¢ be a vector of AIRS channel radiances and S a matrix whose
rows are AIRS SRFs tabulated at a 0.1 cm~? grid

@ then d = S~1c is the deconvolution of ¢ on that grid

@ this can be reconvolved with a double Fourier transform to the CrlS
user grid

@ the useful channels are the intersection of the AIRS and CrlS bands

e the stability of S~ is significantly improved with the L1c in
comparison with the L1b channel set, and further improved with a
spacing constraint that drops a few of the closest L1c channels

@ the condition of the S, matrix is then reasonably small and around
250 giving a useful inversion.



AIRS channels

Approach

ILS Conversion
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SRF matrix S

SRF sample grid

All-sky Results
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Motteler method: validation (LW)

Translation of AIRS spectrum to CrlIS spectral grid, involves
deconvolution of AIRS using the measured SRFs to a fine grid then
convolving to the measured CrIS ILS. Using kcarta with 49 sample
atmospheric profiles to test:

AIRS 1C and CrIS LW profile 1
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Motteler method: validation (MW)

The method uses AIRS L1C (spectral gaps are filled and dead channels
reconstructed) provides for well behaved matrix manipulation and
restricts ringing effects to band edges.

AIRS 1C and CrIS MW profile 1
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Full Spectrum Actual AIRS CRIS SNOs for 2013

SNO 2013 AIRS I1b (b) CRIS (g) AtoC (r)
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L1c for AIRS Conversion to CrlS
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L1c for AIRS Conversion to CrlS
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L1c for AIRS Conversion to CrlS
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Full Spectrum Differences: AIRS/CrlS SNOs

AIRS deconvolution —> reconvolution, not statistical, uses measured ILS functions
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0.2K “ringing” has many sources, all being worked.

ILS differences largely gone, remaining are radiometric issues.
Standard error of these results very low, well within 0.01K uncertainty.
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CrlS - AIRS SNOs versus Scene Temperature

Detector non-linearity can cause scene dependent differences among sensors. Here we
show longwave (for year 2013) CrIS minus AIRS SNO differences for window and deep
water line channels. The AIRS 1593 cm ™ channel ILS has been converted to the CrlS
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All CrIS FOVs are included here, non-linearity likely causing slope at 1593 cm~*. Clearly,

AIRS/IASI/CrlS already agree ~0.2K with no adjustments! SNO should allow

adjustments (when needed) with high precision.
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Full Spectrum Actual AIRS IASI SNOs for 2013
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CrIS/IASI SNO's, Dec. 5-6, 2014
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Proposed climate record will use lower panel ILS (possibly reduced even
more)
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AIRS Stability: Using Clear Scene Subset

o Clear ocean scenes, binned by latitude daily for 10 years (hot PDFs).

o Create simulation set from ERA using forward model (SARTA)

o Determine 10-year linear BT rate (dBT /dt) from fit to 4-term sine series
(seasonal and harmonics) + constant + linear rate.

Sample Linear BT Rates and Fitting Errors
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AIRS Stability

Stability
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Compare OEM retrievals from clear subset to CO» and SST climatologies.

AIRS Retrieved CO2 Growth Rate vs

In-Situ: 2ppm ~0.06K

AIRS Retrieved SST vs Tropical SST

Climate Data Records
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All-sky Results
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Conclusions

@ Operational sensors have the stability needed for climate

@ In-orbit overlap should allow stitching records with uncertainty
equivalent to 0.1K/decade. Some risk.

@ Demonstrated re-analysis level results with all-sky retrievals derived
from radiance trends

o PDF approach may lower sensitivity to instrument accuracy for some
variables

@ This approach allows a much more rigorous error analysis needed for
community acceptance of satellite derived climate change.
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