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Abstract Archives of in situ sea surface temperature (SST) measurements extend backmore than 160 years.
Quality of themeasurements is variable, and the area of the oceans they sample is limited, especially early in the
record and during the two world wars. Measurements of SST and the gridded data sets that are based on them
are used in many applications so understanding and estimating the uncertainties are vital. The aim of this
review is to give an overview of the various components that contribute to the overall uncertainty of SST
measurements made in situ and of the data sets that are derived from them. In doing so, it also aims to identify
current gaps in understanding. Uncertainties arise at the level of individual measurements with both systematic
and random effects and, although these have been extensively studied, refinement of the error models
continues. Recent improvements have been made in the understanding of the pervasive systematic errors that
affect the assessment of long-term trends and variability. However, the adjustments applied to minimize these
systematic errors are uncertain and these uncertainties are higher before the 1970s and particularly large in the
period surrounding the Second World War owing to a lack of reliable metadata. The uncertainties associated
with the choice of statistical methods used to create globally complete SST data sets have been explored using
different analysis techniques, but they do not incorporate the latest understanding of measurement errors, and
they want for a fair benchmark against which their skill can be objectively assessed. These problems can be
addressed by the creation of new end-to-end SST analyses and by the recovery and digitization of data and
metadata from ship log books and other contemporary literature.

1. Introduction

Measurements of the temperature of the sea surface have beenmade formore than 200 years for a wide variety
of purposes. The earliest measurements of sea surface temperature (SST) in the eighteenth century were taken
out of pure scientific interest. Later, after the connection between SST and ocean currents was made, large
numbers of measurements were made for the construction of navigational charts. In the twentieth century, the
needs of weather forecasting and, to an extent, the need to producemarine climate summaries determined the
quantity and quality of observations. Most historical SST measurements were not made by dedicated scientific
vessels but by voluntary observing ships (VOS) on the basis that they would contribute to the safety of life at
sea. This is reflected in the geographical distribution of observations, which are largely confined to major
shipping lanes.

Nowadays, in situ measurements of SST—those made at the surface as opposed to those made remotely by
satellites or aircraft—are used in diverse applications. They are used directly in calibration and validation of
satellite retrievals, and they are assimilated into ocean analyses [Roberts-Jones et al., 2012]. They are also used
to construct data sets of summaries of SST on regular grids, and globally complete SST fields are created
using statistical techniques to impute SSTs in regions where there are no observations. The SST data sets and
statistical SST “reconstructions” or “analyses” are widely used, for example, as an index of global climate
change [Morice et al., 2012], as a boundary condition for climate simulations [Folland, 2005] and reanalyses
[Simmons et al., 2010], as initial conditions for decadal forecasts [Smith et al., 2007], in studies of hurricane for-
mation [Saunders and Harris, 1997], and in studies of the impact of climate change on marine ecosystems
[Sheppard and Rayner, 2002].

As the demands for SST measurements have changed, so have the instruments used to make them, and
so have the ships and other vessels from which the measurements were made. The first systematic ob-
servations were made using buckets to collect water samples. Buckets made of wood, canvas, tin, leather,
brass, rubber, and plastic—of designs as various as the materials employed in their construction—have all
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been used to measure the temperature of the surface layers of the ocean. There are two problems with
this approach. The first is that during the collection and hauling, the temperature of the water sample can
be modified by the combined actions of latent and sensible heat transfer and the warmth of the Sun. Even
in the best conditions, an accurate measurement requires diligence on the part of the sailor; that is the
second problem. Improvements to minimize the physical effects were made to bucket designs during the
1950s, but as ships became larger and faster, the making of the measurements became not just thankless
but dangerous.

After the advent of steam ships in the late nineteenth century, it was routine to measure the temperature of
the sea water that was circulated through the steam condenser. Condenser inlet measurements and later,
engine room inlet (ERI) measurements, were often recorded in ship logbooks, but they were not entered into
meteorological logs until the 1930s. The convenience of using measurements that were made as a matter of
routine, and the attendant reduction in the risk of losing a bucket or sailor overboard, meant that ERI mea-
surements became the preferred method for measuring SST on board ships during the latter half of the
twentieth century. That is not to say that the method was without its difficulties. Modification of the tem-
perature of the water between inlet and thermometer was still a problem, and it was now compounded by the
varying depth of the measurements.

Since the 1970s, a growing number of ships have been fitted with dedicated sensors either outside or inside
the hull. These have been joined by a growing array of moored and drifting buoys which make automated
measurements that are relayed by satellite. At present, around 90% of all SST observations come from buoys.
In calm conditions, drifting buoys measure at a nominal depth of between 10 and 20 cm depending on their
size. However, wave motion means that in some conditions the buoy will be submerged for part of the time
and report temperatures that are representative of something like the upper 2 m.

Moored buoys are fixed platforms, akin, in some ways, to meteorological stations on land. They come in a
variety of shapes and sizes. Most are a few meters in height and width, but the largest in regular use are
the 12 m Discus buoys designed to weather the wilder climates of the northern oceans. There are two
loose groupings of moored buoys: the Global Tropical Moored Buoy Array (GTMBA) and a more diverse
group of coastal moorings mostly around the U.S. The GTMBA has regular arrays of moorings in the
tropical Pacific, Atlantic, and Indian Oceans. The majority of moored buoys measure SST at a nominal
depth of 1 m. Some measure slightly deeper, and some moorings make measurements at a range
of depths.

SST measurements from ships and buoys together with near-surface measurements made by oceanographic
cruises have been gathered in digital archives. The largest andmost comprehensive of these is the International
Comprehensive Ocean-Atmosphere Data Set (ICOADS) [Woodruff et al., 2011]. The latest release of
ICOADS, release 2.5, contains individual marine reports from 1662 to 2007, but air and sea temperature
measurements only start to appear in the nineteenth Century. Metadata giving information about some
of the measurements and the ships that make them is also provided and is now complemented by in-
formation from regular bulletins such as WMO publication 47 (http://www.wmo.int/pages/prog/www/
ois/pub47/pub47-home.htm).

Other digital archives exist. Research vessel (RV) (http://coaps.fsu.edu/RVSMDC/index.shtml) data are gathered at
the Research Vessel Surface Meteorology Data Center at Florida State University. Woods Hole Oceanographic
Institute (http://www.whoi.edu/) maintains an archive of research mooring data and the OceanSites website
(http://www.oceansites.org/data/index.html) provides links to other mooring data. The Pacific Marine
Environmental Laboratorymaintains an archive ofwater temperaturemeasurements from theGTMBAat a range of
depths and time resolutions that are not available in ICOADS (http://www.pmel.noaa.gov.tao/global/global.html).
Near-surfacemeasurements from other subsurface sources such as the Argo array of autonomous profiling
floats also exist.

Despite being comprehensive, ICOADS is incomplete. Large archives of paper records exist around the world,
and many of these have yet to be digitized. It is not possible yet to know exactly how many undigitized re-
cords remain, because there is no definitive catalog of global archives. What is known is that many archives
that have been identified are far from being exhausted. The potential for reducing the uncertainty in SST
analyses as well as in reconstructions of other marine variables is clear, but funding, particularly sustained
funding, for the efforts to identify, image, and key in the data has proved difficult to find. Nonetheless, there
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have been some successes such as a project to crowd source the keying of Royal Navy logbooks from the First
World War. Volunteers on the OldWeather.org project keyed pages from the logbooks online. In the 3 years
since the project started, more than 1.6 million weather observations have been digitized by around
16,400 volunteers.

The observing network was not created with a single purpose in mind. It was certainly not intended to meet
the stringent criteria demanded for monitoring long-term environmental change. Nonetheless, historical SST
measurements have been widely used in such studies. In a 2010 paper, Jones and Wigley [2010] identified un-
certainties associated with pervasive systematic errors in SST data sets as an important uncertainty in the es-
timation of global temperature trends. The obvious gulf between the ideal and the reality leads naturally to
questions about the reliability of the SST record. Often this question is couched as a yes/no dichotomy: “are SST
records reliable?” A more useful question is “How reliable are they?” Although historical measurements were
not made for climate research, or any single purpose, it does not mean that it is impossible to derive from them
a record that is useful to a particular end. However, it does mean that special care must be taken in identi-
fying and, as best as possible, quantifying uncertainties.

In using SST observations and the analyses that are based on them, it is important to understand the un-
certainties inherent in them and the assumptions and statistical methods that have gone into their creation.
In this review I aim to give an overview of the various components that contribute to the overall uncertainty
of SST measurements made in situ and of the data sets that are derived from them. In doing so, I also aim to
identify current gaps in understanding.

Section 2 provides a classification of uncertainties. The classifications are not definitive, nor are they
completely distinct. They do, however, reflect the way in which uncertainties have been approached in the
literature and provide a useful framework for thinking about the uncertainties in SST data sets. The uncer-
tainties have been tackled in ascending order of abstraction from the random errors associated with indi-
vidual observations to the generic problem of unknown unknowns. In this review, quoted uncertainties
represent one standard deviation of the relevant distribution unless otherwise stated. Section 3 applies this
framework to analyze progress and understanding under each of the headings. Some shortcomings of the
presentation of uncertainties are discussed in section 4 along with possible solutions. Section 5 reviews how
some analyses have used knowledge of likely errors in SST data sets to minimize their exposure to uncer-
tainty. Section 6 briefly discusses SST retrievals from satellites and how these have been used to understand
the in situ record. The review concludes with a summary of possible future directions.

2. General Classification of Uncertainties

Throughout this review, the distinction will be made between an error and an uncertainty. The distinction
between the two loosely follows the usage in the Guide to the Expression of Uncertainty in Measurement
(GUM) [BIPM, 2008]. The error in ameasurement is the difference between some idealized “true value” and the
measured value and is unknowable. The GUM defines the uncertainty of a measurement as the “parameter,
associated with the result of a measurement that characterizes the dispersion of the values that could rea-
sonably be attributed to the measurand.” This is the sense in which uncertainty is generally meant in the
following discussion. This is not necessarily the same usage as is found in the cited papers. It is common to
see the word error used as a synonym for uncertainty such as in the commonly used phrases, standard error
and analysis error.

Broadly speaking, errors in individual SST observations have been split into two groupings: random observational
errors and systematic observational errors. Although this is a convenient way to deal with the uncertainties, errors
in SST measurements will generally share a little of the characteristics of each.

Random observational errors occur for many reasons: misreading of the thermometer, rounding errors, the
difficulty of reading the thermometer to a precision higher than the smallest marked gradation, incorrectly
recorded values, errors in transcription from written to digital sources, and sensor noise among others.
Although they might confound a single measurement, the independence of the individual errors means they
tend to cancel out when large numbers are averaged together. Therefore, the contribution of random in-
dependent errors to the uncertainty on the global average SST is much smaller than the contribution of
random error to the uncertainty on a single observation, even in the most sparsely observed years.
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Nonetheless, where observations are few, random observational errors can be an important component of
the total uncertainty.

Systematic observational errors are much more problematic, because their effects become relatively more
pronounced as greater numbers of observations are aggregated. Systematic errors might occur because a
particular thermometer is miscalibrated or poorly sited. No amount of averaging of observations from a
thermometer that is miscalibrated such that it reads 1 K too high will reduce the error in the aggregate below
this level, save by chance. However, in many cases, the systematic error will depend on the particular envi-
ronment of the thermometer and will therefore be independent from ship to ship. In this case, averaging
together observations from many different ships or buoys will tend to reduce the contribution of systematic
observational errors to the uncertainty of the average.

In the nineteenth and early twentieth centuries, themajority of observationsweremade using buckets to haul a
sample of water up to the deck for measurement. Although buckets were not always of a standard shape or
size, they had a general tendency under typical environmental conditions to lose heat via evaporation or di-
rectly to the air when the air-sea temperature difference was large. Folland and Parker [1995] provide a more
comprehensive survey of the problem which was already well known in the early twentieth Century (see, for
example, the introduction to Brooks [1926]). Pervasive systematic observational errors like the cold bucket bias are
particularly pertinent for climate studies, because the errors affect the whole observational system and change
over time as observing technologies and practices change. The change can be gradual as old methods are
slowly phased out, but they can also be abrupt, reflecting significant geopolitical events such as the Second
World War [Thompson et al., 2008]. Rapid changes also arise because the digital archives of marine meteoro-
logical reports (ICOADS; [Woodruff et al., 2011]) are themselves discontinuous.

Generally, systematic errors are dealt with by making adjustments based on knowledge of the systematic
effects. The adjustments are uncertain because the variables that determine the size of the systematic error
are imperfectly known. The atmospheric conditions at the point where the measurement was made, the
method used to make the measurement—ERI or bucket—the material used in the construction of the
bucket, if one was used, as well as the general diligence of the sailors making the observations have not in
many cases been reliably recorded. Part of the uncertainty can be estimated by allowing uncertain param-
eters and inputs to the adjustment algorithms to be varied within their plausible ranges, thus, generating a
range of adjustments [e.g., Kennedy et al. [2011c]]. This parametric uncertainty gives an idea of the uncer-
tainties associated with poorly determined parameters within a particular approach, but it does not address
the more general uncertainty arising from the underlying assumptions. This uncertainty will be dealt with
later as structural uncertainty.

First, however, there are a number of other uncertainties associated with the creation of the gridded data sets
and SST analyses that are commonly used as a convenient alternative to dealing with individual marine
observations. The uncertainties are closely related because they arise in the estimation of area-averages from
a finite number of noisy and often sparsely distributed observations.

In Kennedy et al. [2011b], two forms of this uncertainty were considered: grid box sampling uncertainty and
large-scale sampling uncertainty (which they referred to as coverage uncertainty). Grid-box sampling uncer-
tainty refers to the uncertainty accruing from the estimation of an area- average SST anomaly within a grid
box from a finite, and often small, number of observations. Large-scale sampling uncertainty refers to the
uncertainty arising from estimating an area-average for a larger area that encompasses many grid boxes that
do not contain observations. Although these two uncertainties are closely related, it is often easier to esti-
mate the grid box sampling uncertainty, where one is dealing with variability within a grid box, than the
large-scale sampling uncertainty, where one must take into consideration the rich spectrum of variability at a
global scale.

Although some gridded SST data sets contain many grid boxes which are not assigned an SST value because
they contain no measurements, other SST data sets—oftentimes referred to as SST analyses—use a variety of
techniques to fill the gaps. They use information gleaned from data-rich periods to estimate the parameters
of statistical models that are then used to estimate SSTs in the data voids, often by interpolation or pattern
fitting. There are many ways to tackle this problem, and all are necessarily approximations to the truth. The
correctness of the analysis uncertainty estimates derived from these statistical methods are conditional upon
the correctness of the methods, inputs, and assumptions used to derive them. No method is correct,
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therefore, analytic uncertainties based on a particular method will not give a definitive estimate of the true
uncertainty. To gain an appreciation of the full uncertainty, it is necessary to factor in the lack of knowledge
about the correct methods to use, which brings the discussion back to structural uncertainty.

There are many scientifically defensible ways to produce a data set. For example, one might choose to fill
gaps in the data by projecting a set of Empirical Orthogonal Functions (EOFs) onto the available data.
Alternatively, one might opt to fill the data using simple optimal interpolation. Both are defensible ap-
proaches to the problem, but each will give different results. In the process of creating any data set, many
such choices are made. Structural uncertainty [Thorne et al., 2005] is the term used to understand the spread
that arises from the many choices and foundational assumptions that can be (and have to be) made during
data set creation. The character of structural uncertainty is somewhat different to the other uncertainties
considered so far. The uncertainty associated with a measurement error, for example, assumes that there is
some underlying distribution that characterizes the dispersion of the measured values. In contrast, there is
generally no underlying “distribution of methods” that can be used to quantify the structural uncertainty.
Furthermore, the diverse approaches taken by different teamsmight reflect genuine scientific differences about
the nature of the problems to be tackled. Consequently, structural uncertainty is one of the more difficult un-
certainties to quantify or explore efficiently. It requires multiple, independent attempts to resolve the same
difficulties, it is an ongoing commitment, and it does not guarantee that the true value will be encompassed by
those independent estimates. Nevertheless, the role that the creation of multiple independent estimates and
their comparison has played in uncovering, resolving, and quantifying some of the more mystifying
uncertainties in climate analyses is unquestionable. The most obvious—one might say, notorious—examples
are those of tropospheric temperature records made using satellites and radiosondes [Thorne et al., 2011a] and
subsurface ocean temperature analyses [Lyman et al., 2010; Abraham et al., 2013].

This leads finally to unknown unknowns. On 12 February 2002, at a news briefing at the U.S. Department of
Defense, Donald Rumsfeld memorably divided the world of knowledge into three quarters:

“There are known knowns. These are things we know we know. We also know there are known unknowns. That is to

say, we know there are some things we do not know. But there are also unknown unknowns, the ones we don’t

know we don’t know.”

In the context of SST uncertainty, unknown unknowns are those things that have been overlooked. By their
nature, unknown unknowns are unquantifiable; they represent the deeper uncertainties that beset all scientific
endeavors. By deep, I do notmean to imply that they are necessarily large. In this review, I hope to show that the
scope for revolutions in our understanding is limited. Nevertheless, refinement through the continual evolution
of our understanding can only come if we accept that our understanding is incomplete. Unknown unknowns
will only come to light with continued, diligent and sometimes imaginative investigation of the data
and metadata.

3. The Current State of Uncertainty in In Situ SST Analyses

The classification of uncertainties outlined in section 2 will now be used as a framework to assess uncer-
tainties in the global data sets based on in situ measurements. Preliminary to this, it will be helpful to define
what exactly is meant by sea surface temperature.

3.1. Defining Sea Surface Temperature

Traditionally, in situ SST analyses have been considered representative of the upper 10 or so meters of the
ocean. However, the near-surface temperature structure of the ocean can be rather complex. Under condi-
tions of low wind speed and high insolation, a stable stratified layer of warm water can form near the surface.
For a recent review, see Kawai and Wada [2007]. The diurnal temperature range of the sea surface can, under
certain conditions, exceed 5 K and, somewhat attenuated, penetrate to many tens of meters [Prytherch et al.,
2013]. This can lead to strong temperature gradients in the upper fewmeters of the ocean, and consequently,
measurements made at the same time and location but at different depths can record quite different tem-
peratures. Temperatures measured at the same depth but at different times of day can also differ markedly.
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Donlon et al. [2007] proposed that the
depth of the measurement be recorded
along with the temperature as a first
step to reconciling measurements made
at different depths and different times of
day. Donlon et al. [2007] also introduced
the concept of an SST foundation (SSTfnd)
temperature. The current definition
(https://www.ghrsst.org/ghrsst-science/
sst-definitions/) of “SSTfnd is the temper-
ature free of diurnal temperature vari-
ability, i.e., SSTfnd is defined as the
temperature at the first time of the day
when the heat gain from the solar radia-
tion absorption exceeds the heat loss at
the sea surface.” It is generally assumed
that the upper few meters of the ocean
are of approximately constant tempera-
ture at this point. SSTfnd has proved a
practical reference point for comparing
and combining satellite observations

[Roberts-Jones et al., 2012] and was intended to provide “a more precise, well-defined quantity than the previ-
ous loosely defined bulk SST” Donlon et al. [2007].

Unfortunately, such niceties of definition are not readily applicable to historical SST measurements and the
effect of the interaction betweenmeasurement depth andwater temperature on SSTmeasurements in in situ
archives is not clear. For many ships that measure the temperature of water drawn in below the surface, the
depth of the measurements is not known and is likely to have changed depending on how heavily the ship
was loaded. Nor is it clear to what extent any warm surface layer is mixed with cooler subsurface water by the
passage of the ship or by the interaction of wind, water, Sun, and hull [Amot, 1954; Stevenson, 1964]. Similar
interactions have been noted closer to the surface with moored buoys [Kawai and Kawamura, 2000]. James
and Fox [1972] found that ERI measurements from ships became progressively warmer relative to simulta-
neous bucket observations as the depth of the ERI measurement increased, a similar pattern to that seen by
Kent et al. [1993]. Reynolds et al. [2010] found that measurements made by ships, which were largely ERI
measurements in their study period, were on average warmer than nearby drifting buoy observations made
nearer to the surface.

Nonetheless, the concept of the foundation SST can be used to get an idea of how changing measurement
depthmight have affected SST trends in the absence of other considerations. Figure 1 shows an upper estimate
of the potential size of the effect of changing measurement depth on global average SST over time (for cal-
culation details, see Appendix A). The assumption is that buckets and buoys measure in the upper 30 cm, and
engine room measurements are measuring SSTfnd. The estimated global average bias (relative to the 1961–
1990 average) is less than 0.1 K at all times and from 1945 onward is less than 0.05 K. The bias is largest in the
early record when all measurements were made using buckets which sample in the upper meter of the water
column. In the more recent period, the blend of buckets, ERI measurements, and buoys lead to a smaller, time-
varying bias. Although the size of the effect is modest at a global level, locally the average diurnal warming can
exceed 0.5 K, which would imply a larger effect.

A related problem is that changing times of observation could potentially interact with the diurnal cycle of
temperature leading to spurious trends in the data. Kent et al. [2010] note “The implicit assumption is that the
sampling of conditions is regular enough that no regional or time-varying bias is introduced into the data sets
by neglecting such effects.” Ships currently make SST observations at regular intervals throughout the day,
typically every 4 or 6 h, which is sufficient to minimize the aliasing of diurnal cycles, particularly if the mea-
surements are made at depth. During earlier periods when buckets were widely used, there were systematic
changes in the time of observation that might have a more pronounced effect on average SSTs, but this has
not been quantified.

Figure 1. (a) Estimated bias (with respect to the 1961–1990 average) of global
average SST anomalies associated with measurement depth as a function of time.
(b) Global average SST anomaly from the HadSST3 [Kennedy et al., 2011b, 2011c]
median before (black) and after (red) the measurement-depth bias has been
subtracted. The two red lines reflect different assumptions concerning data that
could not be definitively assigned to any particular measurement type. The large
dip during World War II arises because the majority of observations were ERI
measurements.
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Even when the measurement depth is known, there are potential problems. Metadata in WMO Publication 47
show that ships measure water temperatures through a wide range of depths from the near surface down to
around 25 m [Kent et al., 2007]. Although the average depth was typically less than 10 m, the deepest mea-
surements could be sampling water that is colder than the SSTfnd. How large this effect might be is not yet
well understood.

Chiodi and Harrison [2006] identified large-scale warm surface features using SST retrievals from microwave sat-
ellite instruments that persisted for several days. The warm layer was observed at night suggesting that the effect
was independent from diurnal warming, and they hypothesized that the multiday warming might have been
confined to a relatively shallow layer between 1 and 5 m thick. The implication is that the depth of the SST
foundation temperature can vary rapidly and that it can be much shallower than the deepest in situ SST mea-
surements. During a 2 week cruise, Matthews and Matthews [2013] found persistent temperature dif-
ference between the surface and 3 m depth in the tropical Pacific. Similar warm layers can be seen in
data from moored buoys. Figure 2 shows time series from several moorings showing multiday near-
surface warm layers that do not penetrate down to 10 m and in some cases do not reach 5 m.
Climatologies of mixed layer depth (MLD) [see, for example, de Boyer Montégut et al., 2004] indicate
large areas—in regions of upwelling and in the summer hemisphere—where the average MLD is shallower
than 30 m, implying measurable temperature gradients within the depth range of ship SST measurements.
Grodsky et al. [2008] also found differences between SST and temperatures in the mixed layer, which were
largest in areas of persistent upwelling—most notably the eastern Pacific—but they did not consider the
possible confounding effects of systematic errors in SST or other measurements.

To isolate the specific effect of multiday or persistent temperature stratification of the near-surface waters
would require regular measurements of near-surface waters at a range of depths. Such an analysis is now
possible, thanks to the network of Argo floats [Castro et al., 2013]. In what follows, it should be noted that
variations in depth will contribute to the variance of measurements and will therefore be partly, or wholly,
counted in estimates of random and systematic measurement errors.

Figure 2. Time series of upper ocean temperatures (0–30m) fromninemoorings in the Tropical Ocean Atmosphere (TAO) array and the Subduction Array. Themooring and its location are given
above each plot. The different colored lines represent different depths, and these are indicated by the legends in each panel. The Subduction Array data are described inMoyer andWeller [1997].

Reviews of Geophysics 10.1002/2013RG000434

KENNEDY ©2013. American Geophysical Union. All Rights Reserved. 7



3.2. Individual Observational Errors

The general quality of raw SST measurements recorded in digital archives is mixed. Consequently, all SST
analyses perform a stage of prescreening, or quality control (QC) in order to remove observations of low quality
and minimize the number of egregious errors. The size of the uncertainties of individual measurements will
depend to a certain extent on the QC that is applied, but the effects of differences in QC have not been
assessed systematically.
3.2.1. Random Measurement Errors
Many estimates of random observational error uncertainty have been made. Although thermometers issued
to ships by many port meteorological officers are calibrated, such calibration information is not routinely
published, nor is there any guarantee that the temperature of a water sample measured by a well-calibrated
thermometer is equal to the actual SST when the sample has spent time in a bucket, or passed through the
pipe work of a ship. Consequently, estimates of measurement uncertainty from the literature are empirical
estimates derived from considerations of the variance of the data: for example, spatial [Lindau, 2003; Kent and
Challenor, 2006; Emery et al., 2001] and temporal [Stubbs, 1965] semivariograms, by comparing collocated
observations [O’Carroll et al., 2008], by resampling [Shen et al., 2007], by using the variation of the variance
with the number of observations [Rayner et al., 2006], or by comparison with a background field [Kent and
Berry, 2008; Xu and Ignatov, 2010; Ingleby, 2010; Kennedy et al., 2011a; Atkinson et al., 2013]. Some of the
analyses did not distinguish between random observational errors and systematic observational errors,
tending to combine them into one estimate. In addition, it is not always easy to separate the effects of spatial
sampling from measurement errors particularly in regions of high SST variability [Castro et al., 2012].

A single SST measurement from a ship has a typical combined random and systematic error uncertainty of
around 1 K to 1.5 K. Results from individual analyses are summarized in Table 1. The studies are mostly based
on data from 1970 onward.

Measurements are not all of identical quality. Kent and Challenor [2006] showed that in the period 1970–1997,
the uncertainties of measurements from ships varied with location, time, measurement method, and the
country that recruited the ship. Uncertainties were estimated to be larger in the mid-1970s probably due to
data being incorrectly transmitted in real time in the early days of the Global Telecommunication System. Their
estimated uncertainty for engine room measurements was larger than for bucket measurements. Tabata
[1978a] noted that bucket measurements could be accurate to 0.15 K, but that ERI measurements were nearly
an order of magnitude worse (1.16 K). Ingleby [2010] estimated uncertainties for different subsets of the data
and noted that manual VOSclim (a high-quality subset of the VOS fleet) measurements and automated mea-
surements were of slightly higher quality than manual ship measurements in general. Beggs et al. [2012]
showed that Australia Integrated Marine Observing System ships had uncertainties comparable to those from
data buoys. Analyses that have looked at statistics for individual ships and buoys have found that some ships
and buoys take much higher quality measurements than others [Kent and Berry, 2008; Brasnett, 2008; Kennedy
et al., 2011a; Atkinson et al., 2013]. The subset of ships (around 40–50% of ship observations) that passed the
more stringent quality control procedures of Atkinson et al. [2013] had significantly lower measurement

Table 1. List of Estimates of Measurement Error Uncertainties for Ships Where Random and Systematic Errors Were Not
Dealt With Separately

References Estimated Measurement Uncertainty for Ship Measurements

Stubbs [1965] 0.11 ± 0.01 K for canvas bucket measurements from an Ocean Weather Ship
Strong and McClain [1984] 1.8 K RMS difference between ship and AVHRR data
Bernstein and Chelton [1985, p. 11,620] 1.1 K
Sarachik [1984] andWeare [1989, p. 359] 1 K
Wilkerson and Earle [1990, p. 3381] 3.5 K
Cummings [2005, Table 1, p. 3592] 1.3 K (ERI); 0.6 K (Hull sensor); 1.2 K (bucket)
Kent and Challenor [2006, p. 484] 1.2 ± 0.4 K or 1.3 ± 0.3 K depending on how measurements were weighted
Kent et al. [1999, Abstract] 1.5 ± 0.1 K
Kent and Berry [2005, Table 2, p. 853] 1.3 ± 0.1 K and 1.2 ± 0.1 K
Reynolds et al. [2002, p. 1613] 1.3 K
Kennedy et al. [2011a, p. 83] 1.0 K
Ingleby [2010, Table 10, p. 1487] 0.9 K for automatic systems; 1.2 K for manual measurements
Kent and Berry [2008, Table 5a, p. 11] 1.1 K
Xu and Ignatov [2010 p. 16 of 18] 1.16 K
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uncertainties assessed using the method of Kennedy et al. [2011a] than did the full fleet of ships. Early results on
hull sensors reported by Emery et al. [1997] indicated the potential for these sensors to make accurate mea-
surements. Indeed, Kent et al. [1993] found that hull sensors installed on ships in the Voluntary Observing Ships
Special Observing Project for the North Atlantic (VSOP-NA) gave consistent measurements during the 2 year
observing period.

Drifting buoy measurements are generally more accurate and consistent than ship measurements, but there
is a greater relative spread between the estimates which are summarized in Table 2. In part these differences
are likely to arise from the level of prescreening that is applied to the observations. Where quality control is
more stringent, estimated uncertainties are likely to be lower and, where the error variance of the observa-
tions is low already, the effects of quality control and processing choices are likely to be more pronounced.
Castro et al. [2012] considered differences between drifting buoys and two different satellite products and
found that there was little difference between buoys produced by different manufacturers. There is some
evidence that the quality of drifting buoy observations has improved slightly over time [Merchant et al., 2012],
but this has not been conclusively demonstrated. As a comparison, temperature measurements from Argo
have been reckoned to have an uncertainty of around 0.002 K [Abraham et al., 2013].

Moored buoys have received less attention. Estimates of the measurement uncertainties are summarized in
Table 3. The two studies [Kennedy et al., 2011a; Xu and Ignatov, 2010] that examined moorings from the
GTMBA separately from other moorings found that they had lower measurement error uncertainties. Castro
et al. [2012] found that the standard deviations of differences between moorings and satellite data were
lower for tropical moorings than for coastal moorings. They noted that in coastal waters, there can be large
local variations in temperature, which satellites cannot resolve. Some moorings along coastlines are located in
estuaries and river mouths and are therefore less likely to be representative of open ocean areas. This is
perhaps one reason whyWilkerson and Earle [1990], who studied U.S. coastal buoys, found such large standard
deviations between ships andmoorings (Table 1).Merchant et al. [2012] found that few coastal moorings met
their required stability criteria.

As noted in section 2, random observational errors are of relatively minor importance in large-scale averages
(see Figure 8 and section 3.6), particularly in the modern period when observations are numerous. For an un-
certainty of 1.0 K for a single observation due to randomobservational error, the resulting uncertainty of a global
annual average based on 10,000 observations would be of the order 0.01 K.
3.2.2. Random and Systematic Measurement Errors
Kent and Berry [2008] and Kennedy et al. [2011a, 2011b] decomposed the observational errors into random and
systematic components. Brasnett [2008] and Xu and Ignatov [2010] implicitly used the same errormodel—their

Table 2. List of Estimates of Measurement Error Uncertainties for Drifting Buoys Where Random and Systematic Errors
Were Not Dealt With Separately

References Estimated Measurement Uncertainty for Drifting Buoy Measurements

Strong and McClain [1984] 0.6 K RMS difference between drifter and AVHRR
Reynolds et al. [2002, p. 1613] 0.5 K
Emery et al. [2001, p. 2393] 0.3 K
Cummings [2005, Table 1, p. 3592] 0.12 K
O’Carroll et al. [2008, Abstract] 0.23 K
Kent and Berry [2008, Table 5c, p. 12] 0.67 K
Ingleby [2010, Table 10, p. 1487] 0.33 K
Kennedy et al. [2011a, p. 83] 0.2–0.4 K
Xu and Ignatov [2010, p. 16 of 18] 0.26 K
Merchant et al. [2012, Table 2, p. 8 of 18] 0.15–0.19 K

Table 3. List of Estimates of Measurement Error Uncertainties for Moored Buoys Where Random and Systematic Errors
Were Not Dealt With Separately

Reference Estimated Measurement Uncertainty for Moored Buoy Measurements

Cummings [2005, Table 1, p. 3592] 0.05 K
Kent and Berry [2008, Table 5b, p. 11] 0.4 K
Kennedy et al. [2011a, p. 83] Tropical moorings, 0.12 K; all moorings, 0.21 K
Xu and Ignatov [2010, p. 16 of 18] Tropical moorings, 0.30 K; coastal moorings, 0.39 K
Gilhousen [1987, Table 6, p. 104] 0.22 K
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analyses output the same statistics produced by Kent and Berry [2008]—and the results are indeed very
similar (Figure 3). Estimates are summarized in Table 4. The possibility of correlated measurement errors
is also implicitly allowed for by Ishii et al. [2003] and Hirahara et al. [2013] who merge observations from
a single ship into a super observation before calculating uncertainties. Adding the uncertainties in
quadrature gives a combined observational uncertainty of between 1 and 1.5 K, consistent with earlier
estimates (Table 1) that did not differentiate between the two.

In the studies listed in Table 4, the systematic component of the error was assumed to be different for each
ship, but this does not on its own capture the effects of pervasive systematic errors. The data from Kent and
Berry [2008], Brasnett [2008], and Xu and Ignatov [2010] also show that the systematic observational error
component for some ships varies from month to month suggesting that the partitioning of systematic and
random effects is also a function of the time period considered.

Figure 3. Distributions of estimated measurement errors and uncertainties from ships. (a) Distributions of systematic measurement errors
for all entries (2003–2007) in Kennedy et al. [2011a], Brasnett [2008], Kent and Berry [2008], and Xu and Ignatov [2010]. (b) Distributions of
randommeasurement error uncertainties (expressed as variances) from the same analyses as in Figure 3a and Atkinson et al. [2013]. (c) Same
as in Figure 3a except that each ship now has only a single entry, so the analyses are directly comparable. (d) Scatter plot showing systematic
measurement errors estimated by Brasnett [2008] and Kent and Berry [2008] showing the good correlation between the estimates.

Table 4. List of Estimates of Measurement Error Uncertainties for All Platforms for Studies Where the Measurement Error Uncertainty is Decomposed Into Random
and Systematic Components

Reference Platform Type Random Systematic Notes

Kent and Berry [2008, p. 11, Table 5a] Ship 0.7 K 0.8 K From comparison with Numerical Weather Prediction
fields provided with VOSClim data

Kent and Berry [2008, p. 12, Table 5c] Drifter 0.6 K 0.3 K
Kent and Berry [2008, p. 11, Table 5b] Mooring 0.3 K 0.2 K
Kennedy et al. [2011a, 2011b, p. 86] Ship 0.74 K 0.71 K From comparison with Along Track Scanning

Radiometer SST retrievals
Kennedy et al. [2011a, 2011b, p. 86] Drifter 0.26 K 0.29 K
Brasnett [2008]; values estimated for present
study by author

Ship 1.16 K 0.69 K From comparison with interpolated fields

Xu and Ignatov [2010]; values estimated for
present study by author

Ship 0.81 K 0.53 K From comparison with multisensor satellite SST fields

Kennedy et al. [2011a, 2011b, method] using
Atkinson et al. [2013, whitelist]

Ship 0.56 K 0.37 K From comparison with multisensor satellite SST fields

Gilhousen [1987, Table 6, p. 104] Mooring 0.22 K 0.13 K Comparison of moored buoys
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The addition of a systematic component has a pronounced effect on the uncertainty of large-scale aver-
ages comprising many observations. Kennedy et al. [2011b] estimated that the effect of the correlations
between errors was to increase the uncertainty of the global annual average SST anomaly due to
measurement error from 0.01 K (uncorrelated case) to more than 0.05 K in the nineteenth century and to
more than 0.01 K even in the well-observed modern period when millions of observations contribute to
the annual global average (see Figure 8). Systematic errors could also have a pronounced effect on re-
constructions when they project onto large-scale modes of variability, or on the estimation of EOFs.
However, because of the assumed independence of the errors between ships, the correlated component of
the uncertainty remains relatively unimportant for the analysis of long-term trends of large-scale averages.
Pervasive systematic errors, which are correlated across a large proportion of the global fleet, (section 3.3) are
far more important from that point of view.

One of the difficulties with estimating the uncertainties associated with systematic errors from individual ships
is that not all observations in ICOADS can be associated with an individual ship. Some of the reports have no
more information than a location, time, and SST measurement. Kennedy et al. [2011b] had to make estimates of
how the uncertainty arising from systematic errors behaved as the number of observations increased by con-
sidering the behavior at times when the majority of reports contained a ship name or call sign. They assumed
that observations without call signs behaved in the same way. Kent and Berry [2008] suggested that only ship
reports with extant metadata be used in climate analyses of the modern period to minimize such ambiguities.
For earlier periods, the gains in improved quantification of uncertainty would need to be balanced against the
increased uncertainty arising from reduced coverage.

Many gridded SST data sets and analyses, as well as the studies that depend on them, assume that the ob-
servational errors are normally distributed, but this is not necessarily the case for individual observations.
Kennedy et al. [2011a] investigated the properties of observations that had been quality controlled using the
procedures described in Rayner et al. [2006]. They found that in comparisons with satellite observations, the
distributions of errors were “fat-tailed” with the distribution of errors having a positive kurtosis. In the creation
of gridded data sets from SST observations, the effects of outliers can be minimized somewhat by the use of
resistant or robust statistics such as Winsorised, or trimmed means [see, e.g., Rayner et al., 2006]. The effect of
outliers is further reduced in large-scale averages, and the distribution of errors in large-scale averages tends
toward a normal distribution as the number of observations increases [Kennedy et al., 2011a].
3.2.3. Summary of Individual Observational Errors
Many estimates of uncertainties of ship and buoy SST measurements have been made. A typical SST measure-
mentmade by a ship has an uncertainty of around 1–1.5 K and a drifting buoy observation a typical uncertainty of
around 0.1–0.7 K. More recent studies split these uncertainties into random and systematic components, which
better describe the error characteristics of these platforms. However, a lack ofmetadata, most particularly ship call
signs, hampers the application of such an error model and it does not capture behavior seen in SST measure-
ments such as non-Normal distributions or systematic errors that vary on time scales from months to years.

3.3. Pervasive Systematic Errors and Biases

Kent et al. [2010] conducted a review of literature on pervasive systematic errors (often termed “biases”) in in

situ SST measurements. Many studies have looked at the differences in pervasive systematic errors between

measurement methods, but fewer have attempted to adjust SST records to minimize the effects of changes

in instrumentation.
3.3.1. Bias Adjustments 1850 to 1941
The need for adjustments tominimize the cold bias associatedwith bucketmeasurements in the period from1850
to 1941 is well established. Folland and Parker [1995] calculated adjustments using a simplified physical model of
the buckets used to make SST measurements combined with fields of climatological air-temperature, SST, hu-
midity, wind, and solar radiation. Some parameters in their model were taken from literature, and others were
estimated from the data. The length of time between the water sample leaving the sea surface and the
measurement was estimated by integrating their model until a seasonal cycle in the SST was minimized. The
fractional contributions of canvas and wooden buckets were estimated by assuming a linear change over time
from amix of wooden and canvas buckets to predominantly canvas buckets by 1920. The rate of this change was
estimated by minimizing the air-sea temperature difference in the tropics. The same method was also used in
Rayner et al. [2006] and Kennedy et al. [2011c].
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Smith and Reynolds [2002] took an alternative approach. They adjusted SSTs based on statistical
relationships between Night Marine Air Temperature (NMAT) and SST. The resulting adjustments were
different to those produced by Folland and Parker [1995], although the magnitude of the global
average adjustment was similar. Both Folland and Parker [1995] and Smith and Reynolds [2002] found
a long-term increase in the magnitude of the adjustments—that is, an increasing cold bias—from the
1850s to 1941.

The methods employed by Folland and Parker [1995] and Smith and Reynolds [2002] are not independent as
they both rely on NMAT, which have their own particular pervasive systematic errors [Bottomley et al., 1990;
Rayner et al., 2003; Kent et al., 2013]. The use of NMAT to adjust SST data is, to an extent, unavoidable as the
heat loss from a bucket does depend on the air-sea temperature difference.

In data sets based on ICOADS release 2.0 and later, the earlier bucket adjustments were found to over-adjust
SST in the period 1939–1941. Rayner et al. [2006] and Smith et al. [2008] ramped the adjustments down to
zero over this period. Kennedy et al. [2011c] showed that the ramp-down corresponded to new data in that
release of ICOADS that included a large fraction of ERI measurements.
3.3.2. Bias Adjustments 1941 to Present
In the post-1941 period, Folland and Parker [1995], Smith and Reynolds [2003], Smith and Reynolds [2005], and
Rayner et al. [2006] opted not to adjust the data because they found no clear evidence of the need for ad-
justments. However, Rayner et al. [2006] did identify biases in Japanese and Dutch data after the Second World
War. Thompson et al. [2008] identified a discontinuity in global-average SST associated with a change in the
composition of ICOADS release 2.1 in late 1945. Reynolds et al. [2010] quantified a relative bias between ship and
drifting buoy measurements that they thought could lead to an artificial cooling of the global average SST. Kent
et al. [1999] applied adjustments to ERI measurements, but removed the adjustment from later versions of their
data set.

Kennedy et al. [2011c] and Hirahara et al. [2013] developed bias adjustments for the period 1941 onward.
Kennedy et al. [2011c] used metadata from ICOADS, WMO Publication 47, observer instructions, technical
reports, and scientific papers to estimate biases for individual measurement types and to assign ameasurement
method to as many observations as possible. Hirahara et al. [2013] used a narrower range of metadata. By
comparing subsamples of the data for which the metadata were known, they could estimate appropriate
metadata assignments for the remainder.

To estimate the bias adjustments for long-term analyses, an understanding is needed of how biases
varied for individual components of the observing system. Several studies have examined ERI and bucket
biases in ship data [Brooks, 1926; Brooks, 1928; Lumby, 1927; Collins et al., 1975; Roll, 1951; Kirk and
Gordon, 1952; Amot, 1954; Perlroth, 1962; Saur, 1963; Walden, 1966; Knudsen, 1966; Tauber, 1969; James
and Fox, 1972; Tabata, 1978a, 1978b; Folland et al., 1993; Kent et al., 1993] but only Kent and Kaplan [2006]
provide information that is time-resolved and traceable back to ICOADS. There is a single study of pervasive
systematic errors in hull sensor measurements [Kent et al., 1993], which analyzed data from a small number of
ships over a 2 year period and found that hull sensors were relatively unbiased and showed no systematic
change of bias with depth.

Few studies have looked at the long-term stability and calibration drifts of drifting buoys. Reverdin et al. [2010]
installed 16 drifters with high-quality temperature sensors in addition to their usual temperature sensors and
found that the temperatures measured by the drifters showed inaccuracies that were larger than the 0.1°C
target accuracy and that they exhibited significant calibration drifts. This is consistent with the behavior seen
by Atkinson et al. [2013].
3.3.3. Estimating Uncertainty in Bias Adjustments
Folland and Parker [1995] did not explicitly estimate the uncertainties in their adjustments. Rayner et al. [2006]
explored the parametric uncertainty in the Folland and Parker [1995] adjustments using a Monte-Carlo
method. In Smith and Reynolds [2004] the uncertainty in the bias adjustments was estimated by taking the
mean square difference between the Smith and Reynolds [2002] adjustments and the Folland and Parker
[1995] adjustments, a first-order estimate of the structural uncertainty.

Kennedy et al. [2011c] used a Monte-Carlo method to explore the parametric uncertainty within their particular
approach to bias adjustment. Hirahara et al. [2013] also provide uncertainties on their adjustments that are a
combination of analysis uncertainties and regression uncertainty.
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An important component of the uncer-
tainty of adjustments for the effects of
persistent systematic errors arises from a
lack of knowledge concerning how the
measurements were made. Metadata are
often missing, incomplete, or ambiguous,
and sometimes different sources give
conflicting information. Kent et al. [2007]
assessed metadata from ICOADS and
WMO Publication 47. They found disa-
greement in around 20–40% of cases
where metadata were available from
both sources. Kennedy et al. [2011c]
allowed for up to 50% uncertainty in
metadata assignments based on the dis-
crepancy between observer instructions
and measurement methods recorded in
WMOPublication 47.Hirahara et al. [2013]
used differences between subsets of data
to infer the fraction of observations made
using different methods.

Figure 4 compares estimated biases and
metadata assignments from Kennedy et al.
[2011c] and Hirahara et al. [2013]. It shows
that from 1945, the estimated biases
agree within their parametric uncertainty
ranges (Figure 4c), and that the fractions
of measurement methods estimated by
Kennedy et al. [2011c] from literature and
other metadata are consistent with the
fractions inferred from the data by
Hirahara et al. [2013] (Figure 4b).
However, there are two key differences
that highlight the importance of structural
uncertainty for understanding the bias

adjustments. The first difference is that the phasing out of uninsulated buckets in Hirahara et al. [2013] happens
earlier and faster than that allowed for in the parametric uncertainty analysis of Kennedy et al. [2011c] (Figure 4a).
In Hirahara et al. [2013], the changeover starts in the 1940s and is especially rapid in the early 1960s, being nearly
complete by around 1962. The second difference is that the estimated bias during the SecondWorldWar is lower
in the analysis of Hirahara et al. [2013] than in Kennedy et al. [2011c]. Further work is needed to understand these
differences and more complete, more reliable metadata would help reduce uncertainty in SST records.

In the post-1941 period, Smith and Reynolds [2003] and Smith and Reynolds [2005] estimated the uncertainty due
to pervasive systematic errors by considering the difference in estimated bias between measurements made in
the engine rooms of the ships and measurements from all ships between 1994 and 1997. They estimated a
minimum 1 sigma standard error in the global average of around 0.015 K. The range is similar to, albeit slightly
narrower than, that estimated by Kennedy et al. [2011c]. The difficulty with the approach taken by Smith and
Reynolds [2003], Smith and Reynolds [2005], and Smith et al. [2008] is that the quoted uncertainty range is
considered to be symmetric, whereas Kennedy et al. [2011c] and Hirahara et al. [2013] suggest that the true
global mean is consistently higher than Smith et al. [2008] in the period 1945–1960 (Figure 5). It also sug-
gests that the estimate of Smith et al. [2008] in the post World War II period (1945–1950s) was slightly too
conservative because it compared ERI measurements with a mixture of ERI and insulated bucket
measurements, whereas large numbers of observations were made using buckets [Kennedy et al., 2011c;
Hirahara et al., 2013].

Figure 4. Comparison between COBE-2 (red) and HadSST3 (black) metadata and bias
estimates for the period 1920 to 2010. (a) Fraction of buckets assessed as being
uninsulated. The two black lines indicate the earliest and latest switchover dates
allowed in the generation of the HadSST3 ensemble. (b) Fractional contribution to the
global average from buckets, buoys, and engine roommeasurements. The total is less
than unity; the remainder is either unknown (in the HadSST3 analysis) or
uncategorized (COBE-2). (c) Estimated bias in the global average SST. There are 100
versions of HadSST3 and a single estimate from COBE-2.
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3.3.4. Refinements to Estimates of
Pervasive Systematic Errors
There are some factors that have not
been explicitly considered in estimates
of biases. Refinements to the models of
pervasive systematic errors will address
factors that are implicitly included in
random and systematic measurement
uncertainties. If it is possible to estimate
the bias on a ship-by-ship, or observa-
tion-by-observation basis, taking
account of the conditions peculiar to that
observation, then it might be expected
that uncertainties associated with ran-
dom and systematic observational error
will decrease.

Both Kennedy et al. [2011c] and Hirahara
et al. [2013] make simplifying assump-
tions about the systematic errors
associated with modern insulated
buckets. Various bucket designs have
been used since the end of the Second
World War, which are likely to have
different bias characteristics. Physical
models could be developed for each
type of bucket similar to those used
by Folland and Parker [1995], or sta-
tistical methods could be used to es-
timate the biases as was done in Kent
and Kaplan [2006].

Other simplifying assumptions used in
all analyses include such things as as-
suming that changes in the observing
system happened linearly. Evidence sug-

gests that changes in measurement method were not always monotonic and sometimes happened abruptly
(see Figure 4). Improved metadata or more sophisticated statistical techniques could help assess
these uncertainties.

An uncertainty associated with pervasive systematic biases, which is not explicitly resolved by current
analyses, arises when the conditions at the time of the measurement deviate from the climatological
values assumed by the bias correction scheme. If, for instance, the air sea temperature difference is
larger than that assumed by the Folland and Parker [1995] scheme, then there will be an additional
systematic uncertainty that is correlated strongly across synoptic spatial and temporal scales with a
potential long-term component where differences persist for months or years. Likewise, conditions
vary during the day. Such discrepancies could be assessed by evaluating the systematic error using
local conditions. Such information could be taken from reanalyses, or an appropriate bucket model
could be explicitly included when SST observations are assimilated into ocean-only and coupled
reanalyses.
3.3.5. Assessing the Efficacy of Bias Adjustments
The efficacy of the bias adjustments and their uncertainties are difficult to assess. Folland and Parker [1995]
presented wind tunnel and ship board tests and also used their adjustments to estimate the differences
between bucket and ERI measurements in broad latitude bands. These limited comparisons showed that
their model could predict experimental results to better than 0.2 K. Folland and Salinger [1995] presented
direct comparisons between air temperatures measured in New Zealand and SST measurements made

Figure 5. (a) Global, (b) Northern Hemisphere, (c) Southern Hemisphere, and (d) Tropical
average sea surface temperature anomalies with estimated 95% confidence range for
ERSSTv3b (1880–2012 dark blue line and pale blue shading) and for the HadSST3-
based analysis described in section 3.7 (1850–2011 red line and orange and yellow
shading). The yellow shading indicates an estimate of the additional structural
uncertainty in the HadSST3 series.
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nearby. Smith and Reynolds [2002] used oceanographic observations to assess their adjustments and those of
Folland and Parker [1995]. In regions with sufficient observations, they found that the magnitude of the Smith
and Reynolds [2002] adjustments better explained the differences between SSTs and oceanographic observa-
tions, but the phase of the annual cycle was better captured by Folland and Parker [1995]. Hanawa et al. [2000]
showed that the Folland and Parker [1995] adjustments improved the agreement between Japanese ship data
and independent SST data from Japanese coastal stations in two periods: before and after the Second World
War. However, the collection of ship data (COADS and Kobe collections) used in Hanawa et al. [2000] might not
have had the same bias characteristics as assumed by Folland and Parker [1995] (based on theMet OfficeMarine
Data Bank) in developing their adjustments. Other long-term coastal records of water temperature exist. Some of
these [Hanna et al., 2006;MacKenzie and Schiedek, 2007; Cannaby and Hüsrevoğlu, 2009] have been compared to
open ocean SST analyses (though not with the express intention of assessing bias adjustments), others have not
[Maul et al., 2001; Nixon et al., 2004; Breaker et al., 2005].

More recently, Matthews [2013] and Matthews and Matthews [2013] reported field measurements of SST
made using different buckets and simultaneous thermosalinograph measurements. They found negligible
biases between different buckets, but their experimental design involved larger buckets and shorter mea-
surement times than were used in Folland and Parker [1995]. Nevertheless, this highlights the potential for
well-designed field experiments to improve understanding of historical biases.

An analysis by Gouretski et al. [2012] compared SST observations with near-surface measurements (0–20 m
depth) taken from oceanographic profiles. It shows that the overall shape of the global average is consistent
between the two independent analyses, but that there are differences of around 0.1 K between 1950 and 1970.
These are most likely attributable to residual biases, although, as noted above, actual physical differences be-
tween the sea surface and the 0–20 m layer cannot be ruled out. Similar differences are seen when comparing
SST with the average over the 0–20 m layer of the analysis of Palmer et al. [2007] (not shown).

Since the late 1940s, global and hemispheric average SST anomalies calculated separately from adjusted bucket
measurements and adjusted ERI measurements showed consistent long-term and short-term changes [Kennedy
et al., 2011c]. From the 1990s, there are also plentiful observations from drifting and moored buoys.

In contrast to themodern period, the period before 1950 is characterized by amuch less diverse observing fleet.
During the Second World War, the majority of measurements were ERI measurements. Before the war, buckets
were the primary means by which SST observations were made. This makes it very difficult to compare simul-
taneous independent subsets of the data. In periods with fewer independent measurement types, it might be
possible to use changes in environmental conditions such as day-night differences or air-sea temperature dif-
ferences to diagnose systematic errors in the data.

Qualitative agreement between the long-term behavior of different global temperature measures—including
NMAT, SST, and land temperatures—gives a generally consistent picture of historical global temperature
change (Figure 6), but a direct comparison is less informative about uncertainty in the magnitude of the trends.
Kent et al. [2013] showed similar temporal evolution of NMAT and SST in broad latitude bands in the northern
hemisphere and tropics. However, there are differences of up to 0.4 K in the band from 55°S to 15°S be-
tween 1940 and 1960. Studies such as that by Folland [2005] can be used to make more quantitative
comparisons. Folland [2005] compared measured land air temperatures with land air temperatures
from an atmosphere-only climate model that had observed SSTs (with and without bucket adjust-
ments) as a boundary forcing. He found much better agreement when the SSTs were adjusted.
Atmospheric reanalyses also use observed SSTs along with other observed meteorological variables
to infer a physically consistent estimate of land surface air temperatures. Simmons et al. [2010]
showed that land air temperatures from a reanalysis driven by observed SSTs were very close to
those of CRUTEM3 [Brohan et al., 2006] over the period 1973 to 2008. Compo et al. [2013] showed
similar results for the whole of the twentieth century although the agreement was not quite so close.
Although their intention was to show that land temperatures were reliable, their results indicate that
there is broad consistency between observed SSTs and land temperatures.
3.3.6. Summary of Pervasive Systematic Errors and Biases
The need to adjust SST data prior to 1941 to account for a cold bias associated with the use of canvas and
wooden buckets is well established. There is also good evidence for the need to adjust data after 1941.
Adjustments for these pervasive systematic errors have been developed. There are, at all times, two different
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estimates of the bias adjustments, which
are in general agreement and give a first
indication of the structural uncertainty.
Evidence for the efficacy of the adjust-
ments comes from wind tunnel tests,
comparisons with coastal sites and con-
sistency with subsurface ocean temper-
atures, marine air temperatures and land
air temperatures. Contrary evidence
comes from a recent field experiment in
the Pacific. Uncertainty could be better
understood by the following: improve-
ments in metadata; carefully designed
fields tests of buckets and other mea-
surement methods; the creation of new
independent evaluations of the biases;
and continued comparison between SST
and related variables.

3.4. Sampling Uncertainty

The magnitude of the grid box sampling
uncertainty depends on the correlation
and variability of SSTs within the grid
box, on the number of observations
contributing to the grid box average and
where in the grid box they are located.
High-average correlations within a grid
box, low variability, and large numbers
of observations lead to lower uncer-
tainty estimates. Conversely, areas of
high variability or low average correla-
tion, such as frontal regions or western
boundary currents, tend to have higher
grid box sampling uncertainties as do
grid box averages based on smaller
numbers of observations. The estimation

of uncertainties arising from the sparseness of observations at scales from grid box level to global has been
approached in a number of ways.
3.4.1. Grid Box Sampling Uncertainty
Weare and Strub [1981] counted the number of observations needed tominimize sampling uncertainty in a 5° × 5°
grid box by ensuring that the observations were evenly split between all areas of the grid box, month, and diurnal
cycle. From this, they concluded that even sampling could not be achieved with fewer than 11 observations, but
that in practice, more than 11, sometimes many more, would be needed.

Rayner et al. [2006] estimated a combined measurement and grid box sampling uncertainty by considering
how the variance of the grid box average changed as a function of the number of observations. The tech-
nique picked up spatial variations in grid box sampling uncertainty associated with regions of high variability.
Rayner et al. [2009] showed results from an unpublished analysis by Kaplan, in which spatially complete
satellite data were used to estimate the variability within 1° × 1° grid boxes. The same features were seen as in
the Rayner et al. [2006] analysis, allowing for differences in resolution, although the uncertainties estimated
by Kaplan tended to be higher. She et al. [2007] also used subsampling of satellite data to estimate grid box
sampling uncertainty for the Baltic Sea and North Sea. Kent and Berry [2005] showed that separately assessing
measurement and sampling uncertainties can help to decide whether more or better observations are
needed to reduce the average uncertainty in an individual grid box.

Figure 6. Global average sea surface temperature anomalies and night marine air tem-
perature anomalies from a range of data sets. (a) Simple gridded SST data sets including
ICOADS v2.1 (red), 200 realizations of HadSST3 (pale grey), HadSST2 (dark green),
TOHOKU (darker grey), ARC [Merchant et al., 2012] (lime green), and the COBE-2 data
set subsampled to observational coverage (pale blue). (b) Eight interpolated SST
analyses including the COBE-2 data set (pale blue), HadISST1.1 (gold), ERSSTv3b
(orange), VBPCA, GPFA, and GP (deep magenta), Kaplan (pink), NOCS (black). (c) The
series in Figures 6a and 6b combined. (d) NMAT [Ishii et al., 2005] (red and blue),
MOHMAT4N3 and HadMAT [Rayner et al., 2003] (pink and orange), [Berry and Kent,
2011] (green), HadNMAT2 [Kent et al., 2013] (gold).
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Morrissey and Greene [2009] developed a theoretical model for estimating grid box sampling uncertainty that
accounted for nonrandom sampling within a grid box. This was an extension of the method used to estimate
sampling uncertainties in land temperature data and global temperatures by Jones et al. [1997]. Land tem-
peratures are measured by stations at fixed locations that take measurements every day. Marine temperature
measurements are taken at fixed times, but the ships and drifting buoys move during a particular month.
Morrissey and Greene [2009] do not provide a practical implementation of their approach, only a theoretical
framework. Kennedy et al. [2011b] extended the concept of the average correlation within a grid box
developed in Jones et al. [1997] to incorporate a time dimension. Kent and Berry [2008] used a temporal
autocorrelationmodel that took account of the days within the period that were sampled and the days which
were not, to estimate the temporal sampling uncertainty. An alternative to the Jones et al. [1997] method for
land data was provided by Shen et al. [2007], but it has not yet been applied in SST analyses.

It is possible that the locations visited by ships and drifting buoys are related and, to an extent, dictated by
meteorological and oceanographic conditions. Ships have long used the prevailing currents in the Atlantic
to speed their progress, and it is in the interest of almost all shipping to steer clear of hurricanes and other
foul weather. Bad weather is also likely to have influenced how and when observations were made.
Conversely, the conditions in which a sail ship might become becalmed could lead to over sampling of
higher SSTs. Drifting buoys drift, and a drifter trapped in an eddy might persistently measure temperatures
that are representative of only a very limited area. Drifters also tend to drift out of areas of upwelling and
congregate in other areas.

The effect of uneven sampling can be reduced by the creation of “super observations” during the gridding
process [Rayner et al., 2006], or data preparation stage [Ishii et al., 2003], but such processes cannot readily
account for the situations where no observations are made at all.

As noted by Rayner et al. [2006], the grid box sampling uncertainties are likely to be uncorrelated or only
weakly correlated between grid boxes so the effect of averaging together many grid boxes will be to reduce
the combined grid box sampling uncertainty by a factor proportional to the square root of the number of grid
boxes. Consequently, the sampling component of the uncertainty will be of minor importance in the global
annual average (Figure 8).
3.4.2. Large-Scale Sampling Uncertainty
Because Rayner et al. [2006] and Kennedy et al. [2011b] make no attempt to estimate temperatures in grid boxes
which contain no observations, an additional uncertainty had to be computed when estimating area-averages.
Rayner et al. [2006] used Optimal Averaging (OA) as described in Folland et al. [2001] which estimates the area
average in a statistically optimal way and provides an estimate of the large-scale sampling uncertainty. Kennedy
et al. [2011b] subsampled globally complete fields taken from three SST analyses and obtained similar uncer-
tainties from each. The uncertainties of the global averages computed by Kennedy et al. [2011b] were generally
larger than those estimated by Rayner et al. [2006]. Palmer and Brohan [2011] used an empirical method based
on that employed for grid box averages in Rayner et al. [2006] to estimate global and ocean basin averages
of subsurface temperatures.

The Kennedy et al. [2011b] large-scale sampling uncertainty of the global average SST anomaly is largest (with
a 2 sigma uncertainty of around 0.15°C) in the 1860s when coverage was at its worst (Figure 8). This falls to
0.03°C by 2006. The fact that the large-scale sampling uncertainty should be so small—particularly in the
nineteenth century—may be surprising. The relatively small uncertainty might simply be a reflection of the
assumptions made in the analyses used by Kennedy et al. [2011b] to estimate the large-scale sampling un-
certainty. Indeed, Gouretski et al. [2012] found that subsampling an ocean reanalysis underestimated the un-
certainty when the coverage was very sparse. However, estimates made by Jones [1994] suggest that a
hemispheric-average land-surface air temperature series might be constructed using as few as 109 stations. For
SST, the variability is typically much lower than for land temperatures, though the area is larger. It seems likely
that the number of stations needed to make a reliable estimate of the global average SST anomaly would not
be vastly greater.

Another way of assessing the large-scale sampling uncertainty is to look at the effect of reducing the
coverage of well-sampled periods to that of the less well sampled nineteenth century and recomputing
the global average [see, for example Parker, 1987]. Figure 7 shows the range of global annual average SST
anomalies obtained by reducing each year to the coverage of years in the nineteenth century. So, for
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example, the range indicated by the
blue area in Figure 7a for 2006 shows
the range of global annual averages
obtained by reducing the coverage of
2006 successively to that of 1850, 1851,
1852… and so on to 1899. The red line
shows the global average SST anomaly
from data that have not been reduced
in coverage. For most years, the differ-
ence between the subsampled and
more fully sampled data is smaller than
0.15 K, and the largest deviations are
smaller than 0.2 K. For the large-scale
sampling uncertainty of the global av-
erage to be significantly larger, it
would require the variability in the
nineteenth century data gaps to be
different from that in the better-
observed period.
3.4.3. Summary of Sampling
Uncertainty
Uncertainties arising from under-sam-
pling at a grid box level are easy to as-
sess if the observations can be assumed

to be randomly distributed within a grid box. However, sampling is not random. The effect of this is re-
duced in most analyses by the calculation of superobservations that combine nearby measurements;
however, optimal methods to minimize uncertainty are not generally applied. Simple estimates of large-
scale sampling uncertainty in the global average SST from subsampling well-sampled periods suggest a
value of at most 0.2 K even in poorly observed years. However, there are potential limitations of these
simple methods and they should be considered together with the range of statistical reconstructions to get
a more complete idea of uncertainty in large-scale averages.

3.5. Reconstruction Techniques and Other Structural Choices

Creating global SST analyses is challenging because of the relative sparseness of observations before the
satellite era and the nonstationarity of the changing climate. A large number of different SST data sets
based on in situ data have been produced employing a variety of statistical methods. The structural
uncertainties associated with estimating SSTs in data voids and at data-sparse times are therefore
somewhat better explored than structural uncertainties in the pervasive systematic errors. Data sets used
in this paper have been summarized in Table 5, and global averages for these data sets are shown
in Figure 6.
3.5.1. Critique of Reconstruction Techniques
The current generation of SST analyses are the survivors of an evolutionary process during which less effective
techniques were discarded in favor of better adapted alternatives. It is worthwhile to ask how, as a group, they
address the range of criticisms that have arisen during that time.

One concern is that patterns of variability in the modern era, which are used to estimate the parameters
of the statistical models, might not faithfully represent variability at earlier times [Hurrell and Trenberth,
1999]. The concern is allayed somewhat by the range of approaches taken. The method of Kaplan et al.
[1998] which uses the modern period to define Empirical Orthogonal Functions (EOFs) (see Hannachi
et al. [2007] for a review of the use of EOFs in the atmospheric sciences) tends to underestimate the
long-term trend. This is particularly obvious in the nineteenth and early twentieth century. Rayner et al.
[2003] extended the method by defining a low-frequency, large-scale EOF that better captured the long-
term trend in the data. However, it is possible that a single EOF will fail to capture all the low-frequency
changes. Smith et al. [2008] allow for a nonstationary low-frequency component in their analysis which
contributes a large component of uncertainty in the early record, but their reconstruction reproduces less

Figure 7. Global average sea surface temperature anomalies and night marine air tem-
perature anomalies from a range of data sets. (a) Simple gridded SST data sets including
ICOADS v2.1 (red), 200 realizations of HadSST3 (pale grey), HadSST2 (dark green),
TOHOKU (darker grey), ARC [Merchant et al., 2012] (lime green), and the COBE-2 data
set subsampled to observational coverage (pale blue). (b) Eight interpolated SST
analyses including the COBE-2 data set (pale blue), HadISST1.1 (gold), ERSSTv3b
(orange), VBPCA, GPFA, and GP (deep magenta), Kaplan (pink), NOCS (black). (c) The
series in Figures 7a and 7b combined. (d) NMAT [Ishii et al., 2005] (red and blue),
MOHMAT4N3 and HadMAT [Rayner et al., 2003] (pink and orange), [Berry and Kent,
2011] (green), HadNMAT2 [Kent et al., 2013] (gold).
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high-frequency variability at data-sparse epochs. Ilin and Kaplan [2009] and Luttinen and Ilin [2009, 2012]
used algorithms that make use of data throughout the record to estimate the covariance structures and
other parameters of their statistical models. The three algorithms use either large-scale patterns (VBPCA,
GPFA) or local correlations (GP). Differences between the three methods are generally small at the global
level, but they diverge during the 1860s when data are few. There is a caveat that, despite using all
available observations, such methods will still tend to give a greater weight to periods with more plen-
tiful observations. Ishii et al. [2005] use a simply parameterized local covariance function for interpolation.
Their optimal interpolation (OI) method was assessed by Hirahara et al. [2013] to have larger analysis uncer-
tainties and larger cross-validation errors than the EOF-based COBE-2 analysis. However, the use of a simple
optimal interpolation method has the advantage that it makes fewer assumptions regarding the stationarity of
large-scale variability.

Another concern is that methods that use EOFs to describe the variability might inadvertently impose
spurious long-range teleconnections that do not exist in the real world [Dommenget, 2007]. Smith et al.
[2008] explicitly limit the range across which teleconnections can act. Ishii et al. [2005] used a local co-
variance structure in their analysis. Analyses such as Kaplan et al. [1998] and Rayner et al. [2003] make
the assumption that the EOFs retained in the analysis capture actual variability in the SST fields, but do
not explicitly differentiate between variability that can be characterized purely in terms of local
covariability and large-scale teleconnections. Karspeck et al. [2012] note that there is not a clear sepa-
ration of scales and that joint estimation of local and large-scale covariances is the logical way to ap-
proach the problem.

Most, if not all, statistical methods have a tendency to lose variance either because they do not explicitly
resolve small-scale processes [Kaplan et al., 1998; Smith et al., 2008], because the method tends toward
the climatological average in the absence of data [Ishii et al., 2005; Berry and Kent, 2011], or because they
tend to smooth the data. Rayner et al. [2003] used the method of Kaplan et al. [1998] but blended
high-quality gridded averages back into the reconstructed fields to improve small-scale variability
where observations were plentiful. Karspeck et al. [2012] analyzed the residual difference between the
observations and the Kaplan et al. [1998] analysis using local nonstationary covariances, and then
drew a range of samples from the posterior distribution in order to provide consistent variance at all
times and locations.

One assumption common to most of the above analysis methods is that SST variability can be
decomposed into a small set of distinct patterns that can be combined linearly to describe any SST field.
However, it is well known that phenomena such as El Niño and La Niña are not symmetric and that the
equations that describe the evolution of SST are nonlinear. Consequently, current analyses might not

Table 5. List of Data Sets Used and Referred to in the Review

Data Set Input Data Set Interpolation Method Resolution

ICOADS summaries
[Woodruff et al., 2011]

ICOADS 2.5 None 2° × 2° monthly

HadSST2 [Rayner et al., 2006] ICOADS 2.1 None 5° × 5° monthly
HadSST3 [Kennedy et al.,
2011b; 2011c]

ICOADS 2.5 None 5° × 5° monthly

TOHOKU [Yasunaka and
Hanawa, 2002]

ICOADS 2.1 None 5° × 5° monthly

HadISST1.1 [Rayner et al., 2003] Met Office Marine Databank and
COADS, AVHRR satellite retrievals

Reduced Space Optimal Interpolation 1° × 1° monthly

ERSSTv3b [Smith et al., 2008] ICOADS 2.1 Separate low- and high-frequency reconstructions.
High-frequency component based on EOTs

2° × 2° monthly

COBE [Ishii et al., 2005] ICOADS 2.1 and Kobe collection Optimal interpolation 1° × 1° monthly
COBE-2 [Hirahara et al., 2013] ICOADS 2.5 and Kobe collection,

AVHRR satellite retrievals
Multiscale analysis based on EOFs 1° × 1° daily and monthly

Kaplan [Kaplan et al., 1998] Met Office Marine Databank Reduced Space Optimal Smoothing 5° × 5° monthly
NOCS [Berry and Kent, 2011] ICOADS 2.5 Optimal Interpolation 1° × 1° daily and monthly
VBPCA [Ilin and Kaplan, 2009] ICOADS 2.5 Variational Bayesian Principal

Component Analysis
5° × 5° monthly

GPFA [Luttinen and Ilin, 2009] ICOADS 2.5 Gaussian Process Factor Analysis 5° × 5° monthly
GP [Luttinen and Ilin, 2012] ICOADS 2.5 Gaussian Process 5° × 5° monthly
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capture the full range of behavior in real SST fields [Karnauskas, 2013]. Current generation SST analyses are
based on the assumption that individual measurement errors are uncorrelated and that errors are normally
distributed. Analysis techniques that incorporate information about the correlation structure of the errors have
not yet been developed. Such techniques are likely to be more computationally expensive and lead to larger
analysis uncertainties.
3.5.2. Other Structural Choices
Analyses based on SST anomalies will also have an uncertainty associated with the climatological reference
fields used to calculate the anomalies. Subsurface analyses have been shown to be particularly sensitive to
choice of base period [Lyman et al., 2010], due in a large part to the relative sparseness of the data sets.
Although the problem is likely to be less severe for the better-observed SST record, there are still regions—
the Southern Ocean and Arctic Ocean—where observations are few. Yasunaka and Hanawa [2011] found that
differences between long-term-average SSTs from different analyses were typically less than 0.5 K, but that
they exceeded 1 K in places. The largest differences were at high latitudes and in regions with strong SST
gradients. There are also likely to be pervasive systematic errors in the climatological averages [Kennedy et al.,
2011c].

Other structural differences arise from the way that SSTs are extended to the edge of the sea ice. SSTs can be
estimated from measurements of sea-ice concentration [Rayner et al., 2003; Smith et al., 2008; Hirahara et al.,
2013]. Although their global impact is likely to be small, the uncertainties in these relationships and estimates
need also to be factored into the uncertainty of SSTs in these regions. At the moment, the uncertainty associ-
ated with historical sea-ice concentrations is poorly understood.
3.5.3. Comparisons of Reconstructions
Yasunaka and Hanawa [2011] examined a range of climate indices based on seven different SST data sets.
They found that the disagreement between data sets was marked before 1880, and that the trends in large
scale averages and indices tend to diverge outside of the common climatology period. For the global aver-
age, the differences between analyses were around 0.2 K before 1920 and around 0.1–0.2 K in the modern
period. Even for relatively well-observed events such as the 1925/1926 El Niño, the detailed evolution of the
SSTs in the tropical Pacific varied from analysis to analysis. The reasons for the discrepancies are not completely
clear because each data set is based on a slightly different set of observations that have been quality controlled
and processed in different ways, a problem that could be alleviated by running analyses on identical input
data sets.

Combined with information about large-scale sampling uncertainties estimated in other ways, the spread be-
tween analyses suggests that the large-scale sampling uncertainty in global average SST anomaly is around 0.2
K in the late nineteenth century. For the large-scale sampling uncertainty of the global average to be much
larger, it would require variability in the early record to have been different from variability in the modern pe-
riod, which is a possibility. The resolution of such a question is most likely to be achieved via the digitization of
more observations from paper records.

Progress in assessing the differences between analysis techniques can also be made by studying the
relative strengths and weaknesses of interpolation techniques on carefully prepared test data sets using
synthetic data, or on “withheld” data from well observed regions. By running each analysis on the same
carefully defined subsets and tests, it should be possible to isolate reasons for the differences between
the analyses and assess the reliability of analysis uncertainty estimates. The International Surface
Temperature Initiative (http://www.surfacetemperatures.org/) has been working on such benchmarking
exercises for land surface air temperature data, building on work such as the COST ACTION project
[Venema et al., 2012].
3.5.4. Summary of Reconstruction Techniques and Structural Uncertainty
A range of reconstruction techniques exist to make globally complete or near-globally complete SST analy-
ses. The spread in global mean SST between analyses is at its worst around 0.2 K. The analyses are based on a
variety of different statistical models suggesting that estimates of global average SST are not strongly de-
pendent on such choices. However, current reconstruction techniques do not account for systematic errors in
the data—they assume errors are random and uncorrelated—and assume that SST fields can be simply pa-
rameterized in terms of limited numbers of patterns or simple covariance relationships. Objective compari-
son of different reconstruction techniques and their associated uncertainty estimates would be aided by the
creation of standard benchmark tests which mimic the distribution and character of observational data.
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3.6. Comparing Components
of Uncertainty

Figure 9 shows individual components
of the overall uncertainty estimated for 3
months. The components include: esti-
mates of structural uncertainty (in lieu of
a formal way to estimate this, it is calcu-
lated as the standard deviation of seven
near-globally complete analyses: COBE,
Kaplan, ERSSTv3, HadISST, GPFA, GP, and
VBPCA), sampling uncertainty, com-
bined random and systematic measure-
ment error uncertainty, bias uncertainty
(estimated from a 200-member ensem-
ble described in section 3.7) and analysis
uncertainties from ERSSTv3b [Smith
et al., 2008].

At a monthly, grid box level, the para-
metric uncertainty in the Kennedy et al.
[2011c] systematic error estimates is
typically the smallest uncertainty and is
nearly always less than 0.2 K. The sam-
pling uncertainty and measurement
uncertainty both depend on the number
of observations, so they are larger in
areas with fewer observations. Of the
two, measurement uncertainty is typi-
cally larger.

In well-observed periods, the spread
between the different analyses is
roughly what one might expect: closer
agreement in well-observed regions,
poorer agreement in data-sparse re-
gions, principally the Southern Ocean

and Arctic Ocean. At more poorly observed times, the spread between analyses is narrower than the clima-
tological standard deviation suggesting that the reconstructions are skilful in the sense that they are pro-
viding useful information in data voids. However, the narrow spread is in contrast to those areas where there
have been changes in the input observations (see, for example, the Indian Ocean in Figures 9b and 9h). A
small number of observations, which are available to one analysis but not another, lead to a larger spread
than is seen in data-free regions implying that, while there is diversity in the approaches, there may still be
too little for the best estimates alone to effectively bracket the true uncertainty range.

The ERSSTv3 analysis uncertainties are largest in regions where there are consistent data voids. They show a
similar pattern to the structural uncertainty estimate in 1944 and 2003, but there is marked difference in 1891,
with the analysis uncertainty being larger than the structural uncertainty in the poorly observed
western Pacific.

Figure 8 shows time series of the different components of uncertainty at different spatial scales from global to
grid box. The bias uncertainty is relatively constant and is the smallest component of uncertainty at the grid
box level for much of the record. The sampling uncertainty for a grid box is larger than the bias uncertainty
when observations are few, but in the recent record, they are comparable. In this example, the measurement
uncertainty is larger than bias and sampling uncertainties at the grid box level, even when observations are
numerous. However, in other grid boxes, characterized by strong SST gradients or high variability, such as the
western boundary currents, the sampling uncertainty could be larger.

Figure 8. Time series of estimated uncertainties arising from different sources in area
averages: (a) Global annual, (b) Northern Hemisphere annual, (c) North Pacific annual,
(d) North Atlantic annual, and (e) a 5° grid box centered on 42.5°W, 27.5°N monthly.
Uncertainty components shown are as follows: (black) grid box sampling uncertainty,
(orange) uncorrelated measurement uncertainty, (yellow) correlated measurement
uncertainty, (pink) parametric bias uncertainty from a 200-member ensemble based
onHadSST3, (blue) large-scale sampling uncertainty, and (green) structural uncer-
tainty estimated by taking the range of the area-average calculated from seven near-
globally complete analyses.
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As the size of the area increases and more observations are included in the average, the sampling and
measurement uncertainties decrease. Two estimates of the measurement uncertainty are included. In one,
correlations between individual errors are taken into account. In the other, measurement errors are as-
sumed to be random and independent. In the latter case, the measurement uncertainties become small
relative to other sources of uncertainty at a basin scale early in the twentieth century. However, the effect
of correlated errors is such that measurement uncertainty remains a major source of uncertainty at all
scales until the 1980s when the global VOS fleet reached its peak and the deployment of drifting and
moored buoys began.

Figure 9. Maps showing (a, g, m) climatological standard deviation of SST, ( b, h, n) structural uncertainty, (c, i, o) sampling uncertainty, (d, j, p) measurement uncertainty, (e,k,q) bias un-
certainty, and (f, l, r) analysis uncertainty from ERSST. Three months are shown: (Figures 9a–9f ) June 1891, (Figures 9g–9l) April 1944, and (Figures 9m–9r) August 2003.
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The largest component at the scales shown here is the structural uncertainty. In the grid box shown, the
structural uncertainty is, at times, larger than the combined uncertainty from other components suggesting
that some or all of the analyses are losing information. At a global level, where estimated analysis uncer-
tainties are available for COBE, COBE-2, Kaplan, and ERSSTv3b data sets, the structural uncertainty is com-
parable to the estimated analysis uncertainties. For example, in 1900, the ERSSTv3b analysis uncertainty is
0.03 K, the COBE analysis uncertainty is 0.06 K, COBE-2 gives 0.05 K, and Kaplan is around 0.05 K.

Because of the nature of the uncertainties arising from the adjustments for pervasive systematic errors, the
uncertainties become relatively more important as the averaging scale increases. At a global scale, bias un-
certainties are comparable to or larger than all other uncertainty components from the 1940s to the present.
There is a caveat: because the SSTs are expressed as anomalies, the size of the bias uncertainty depends on
the base period used to calculate the anomalies. In Figure 8, the period used is 1961–1990, which is why there
is a local minimum in the bias uncertainty centered on that period.

3.7. Estimates of Total Uncertainty

Smith and Reynolds [2005] attempted to combine all the different uncertainties described above to get a total
uncertainty estimate. They combined their analysis uncertainty with measurement uncertainty, bias uncer-
tainty, and structural uncertainty. Uncertainty associated with pervasive systematic errors and structural
uncertainty in the adjustments were estimated by taking the mean square difference between the Smith and
Reynolds [2002] and Folland and Parker [1995] bias adjustments in the prewar period. After World War II, the
bias uncertainty was estimated by calculating the average difference between engine room measurements
and all measurements. Structural uncertainties were estimated by analyzing the spread of three SST analyses.

Figure 5 shows the total uncertainty estimate from the latest version of the ERSST analysis, ERSSTv3b, in blue.
A similar estimate was made based on the HadSST3 data set in the following way. Measurement uncer-
tainties, grid box sampling uncertainties, and large-scale sampling uncertainties were estimated using the
method of Kennedy et al. [2011b, 2011c]. To estimate the uncertainty associated with pervasive systematic
errors, an ensemble of 200 data sets was created. This comprised the 100 original ensemble members from
HadSST3 and a 100-member ensemble generated by replacing the Rayner et al. [2006] bucket-correction fields
with the fields from Smith and Reynolds [2002]. The adjustment uncertainties on individual months were as-
sumed to be correlated within a year, giving a greater uncertainty range than in Kennedy et al. [2011c], par-
ticularly before 1941. During the war years, 0.2 K was added to reflect the additional uncertainty during that
period as described by Kennedy et al. [2011c]. As above, structural uncertainties were estimated by taking the
standard deviation of area-average time series from seven analyses.

The total uncertainty estimates from these two assessments are comparable between 1880 and 1915. Between
1915 and 1941, the ERSSTv3b uncertainty estimate is larger because the estimated bias uncertainty is larger.
The difference is most obvious in the northern hemisphere where the differences between the Smith and
Reynolds [2002] and Folland and Parker [1995] bias adjustments are largest. From 1941 to the present, the
HadSST3-based uncertainty estimate is the larger because the bias uncertainty is larger than that in ERSSTv3b.

The obvious question that arises is “do these assessments span the full uncertainty range?” In this case, it
probably pays to err on the side of caution. Although the structural uncertainty is based on a range of
methods for infilling missing data, there are still commonalities in the approaches taken and there is little
diversity in the approaches to bias adjustment. The lack of diversity is troubling because the differences
between the median estimates of HadSST3 and ERSSTv3b are greater than the estimated uncertainties of the
ERSSTv3b analysis at times during the period 1950–1970, suggesting that the uncertainties may have been
underestimated in the earlier assessment.

4. Presentation of Uncertainty

At present, some groups provide explicit uncertainty estimates based on their analysis techniques [Kaplan et al.,
1998; Smith et al., 2008; Kennedy et al., 2011b, 2011c; Ishii et al., 2005; Hirahara et al., 2013]. The uncertainty
estimates derived from a particular analysis will tend tomisestimate the true uncertainty because they rely on the
analysis method and the assumptions on which it is based being correct.

Comparing uncertainty estimates provided with analyses can be difficult because not all analyses consider
the same sources of uncertainties. Consequently, a narrower uncertainty range does not necessarily imply a
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better analysis. One way that data set providers could help users is to provide an inventory of sources of
uncertainty that have been considered either explicitly or implicitly. This would allow users to assess the
relative maturity of the uncertainty analysis.

There is a further difficulty in supplying and using uncertainty estimates: the traditional means of displaying
uncertainties—the error bar, or error range—does not preserve the covariance structure of the uncertainties.
Unfortunately, storing covariance information for all but the lowest resolution data sets can be prohibitively
expensive. EOF-based analyses, like that of Kaplan et al. [1998], could in principle efficiently store the spatial-
error covariances because only the covariances of the reduced space of principal components need to be kept.
For Kaplan et al. [1998], based on a reduced space of only 80 EOFs, this is a matrix of order 802 elements for each
time step as opposed to 10002 elements for the full-field covariance matrix. The difficulty with this approach
is that not all variability can be resolved by the leading EOFs and excluding higher-order EOFs will underesti-
mate the full uncertainty.

Karspeck et al. [2012] drew samples from the posterior probability produced by their analysis. Each sample pro-
vides an SST field that is consistent with the available observations and the estimated covariance structure.
Sampling has the added advantage that it can be combined easily with Monte-Carlo samples from the mea-
surement bias distributions. However, production of samples is not always computationally efficient. Karspeck
et al. [2012] were able to do it for the North Atlantic region, but the computational costs of extending the
analysis unchanged to the rest of theworld could be prohibitive. Kennedy et al. [2011c] provided an ensemble of
100 interchangeable realizations of their bias-adjusted data set, HadSST3. The ensemble spans parametric un-
certainties in their adjustment method.

By providing a set of plausible realizations of a data set, or alternatively by providing plausible realizations of
typical measurement errors [Mears et al., 2011], it can be relatively easy for users to assess the sensitivity of
their analysis to uncertainties in SST data. For example, individual ensemble members of HadSST3 were used
in Tokinaga et al. [2012], along with other SST analyses, to show that their results were robust to the estimated
bias uncertainties in SSTs.

Another approach [Merchant et al., 2013] is to separate out components of the uncertainty that correlate at
different scales. Randommeasurement errors, such as sensor noise, are uncorrelated. Some uncertainties, for
example, those related to water vapor in a satellite view, are correlated at a synoptic scale. Yet others are
correlated at all times and places. Grouping uncertainties in this way allows users to propagate uncertainty
information more easily.

5. Minimizing Exposure to Uncertainty

Alternative approaches to using the SST data in a way that is less sensitive to biases and other data errors
have been made. The following approaches make use of knowledge concerning the types of errors and
uncertainties found in SST data and have been adapted to account for them. They highlight the impor-
tance of combining understanding of the measurements and their potential errors, as well as
understanding of the phenomenon being analyzed. Perhaps the simplest example is Schell [1959], who
suggested discarding grid box averages (in that case Marsden squares) based on small numbers
of observations.

Thompson et al. [2008] identified an abrupt drop in the observed global average SST anomaly in late 1945,
which they attributed to a rapid change in the composition of ICOADS 2.0 [Worley et al., 2005] from mostly U.
S. ships immediately before the 1945 drop to mostly UK ships immediately afterward. This hypothesis was
lent further weight by Kennedy et al. [2011c]. In a follow-up paper [Thompson et al., 2010], a drop in northern
hemisphere SSTs was identified. In order to show that the drop was not an artifact of the change in mea-
surement method, they divided the ICOADS data into distinct subsets based on the country of the ships
making the measurements, considered a range of different SST analyses and looked at related variables such
as NMAT and land surface air temperatures. The probability of a drop being due to a coincident change in the
way that all countries measured SST, simultaneous with a sudden change in NMAT and land temperature
bias, is small. The fact that the drop was seen in all the different data sets implied that the drop was real.
Tokinaga et al. [2012] took a similar approach, using bucket measurements from ICOADS as a quasi-homoge-
neous estimate of SST change over the period 1950 to 2009.
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In detection and attribution studies, it is common to reduce the coverage of the models to match that of the
data. Doing so reduces the exposure of the study to uncertainties associated with interpolation techniques,
but it does not avoid the problem of systematic biases. Recent studies [Jones and Stott, 2011] have explicitly
used a range of data sets to start to map out the effects of structural uncertainties on detection and
attribution studies.

SST data sets are routinely compared to the output of climate simulations. Bearing in mind the discussion in
section 2 on the definition of SST, it might be necessary to ensure that themodeled output and themeasured SST
correspond to the same quantity. Many climate models employ a surface mixed layer that is several meters thick.
However, models have been run with greater resolution in the near-surface ocean [e.g., Bernie et al., 2008] in order
to simulate diurnal variability.

Another common use of SST data for which an understanding of the limitations of the data is important is in the
calculation and interpretation of EOFs. In many studies EOFs are calculated from globally complete SST analyses
because the lack of missing datamakes calculating EOFs easy. However, it seems wise to bear inmind that a good
deal of statistical processing has already been applied to the SST analyses to make them globally complete.
Extracting EOFs from (or applying any other analysis technique to) what are in some cases EOF analyses already,
could lead to difficulties of interpretation on top of themore general problems [Hannachi et al., 2007;Dommenget,
2007; Karnauskas, 2013]. Techniques exist for estimating EOFs from gridded data sets with missing data and
these can also incorporate uncertainty information though many assume that the errors are uncorrelated and
will tend to underestimate uncertainty in the EOFs and their principal components. See, for example, Roweis
[1998], Schneider [2001], Beckers and Rixen [2003], Rutherford et al. [2003], Houseago-Stokes and Challenor [2004],
Kondrashov and Ghil [2006], Ilin and Kaplan [2009], and Luttinen and Ilin [2009].

6. Satellites

Although the present review is principally concernedwith in situmeasurements of SST, it is necessary tomention
the important role that satellite data play in understanding SST variability and uncertainty. The advantages of
satellite data are obvious; particularly the ability to measure large areas of the ocean using a single instrument,
giving a more nearly global view of SST.

However, the first thing to note is that satellites monitor radiances and do not directly measure SSTs. The
measured radiances are affected by the state and constituents of the atmosphere as well as variations in the
state and temperature of the sea surface. The wavelengths that are sampled are set by the design of the
instrument. Retrieving SST from the radiances is a difficult inverse process and sensitive to biases and other
errors [Merchant et al., 2008b]. The second thing to note is that satellite instruments are sensitive to the skin
(upper few microns), or subskin (upper few millimeters) temperature depending on the wavelengths mea-
sured by the satellite. Because satellite instruments are sensitive to the topmost layer of the ocean, the di-
urnal range of retrieved SSTs is larger than for measurements made at depth. Third, accurate SST retrievals
from infrared instruments are only possible when the view is not obscured by cloud. Microwave retrievals can
penetrate cloud, but suffer from problems near to coastlines, and where precipitation rates are high. They also
have coarser spatial resolution and higher measurement uncertainties [O’Carroll et al., 2008].

The longest records of SST from satellite are derived from the AVHRR (Advanced Very High Resolution Radiometer)
instruments. These instruments make nadir measurements using two infrared channels. The retrievals are
usually calibrated relative to in situ data. More recent reprocessings use optimal estimation to obtain a retrieval
that is independent of the in situ record [Merchant et al., 2008b], but these have not yet been extended to
calculating global averages. Furthermore, the AVHRR instrument is prone to systematic errors caused by
aerosols in the atmosphere, and the satellite orbits drift slowly altering the sampling of the diurnal cycle
through time. Despite the numerous shortcomings of the AVHRR record, Good et al. [2007] showed that there
was a long-term warming trend in SSTs as measured by AVHRR.

The Along-Track Scanning Radiometers (ATSR) [Smith et al., 2012] were designed to meet the needs of climate
monitoring. The ATSRs are dual view instruments, taking nadir and forward views using three infrared channels.
The dual view configuration allows for more effective screening of aerosols, and the three channels allow for
accurate retrievals across a wider range of conditions. Furthermore, the onboard calibration system allows the
stability of the radiance measurements from the instrument to be maintained. The ATSR data have been
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reprocessed in the ATSR Reanalysis for Climate (ARC) project [Merchant et al., 2008a], and the resulting time
series have been shown to have biases of less than 0.1 K and stability better than 5 mK/year since 1993 in the
tropics where reliable long term moorings can be found [Embury et al., 2012; Merchant et al., 2012]. The ARC
reprocessing is almost independent of the in situ network, therefore, it can be used to corroborate trends seen
in the in situ network. In a comparison between global average SST anomalies (at a nominal depth of 0.2 m),
calculated using the ARC data and HadSST3, the two time series agree within the estimated HadSST3 uncer-
tainties except for parts of the ATSR1 record in the early 1990s. The ATSR1 period is believed to be of lower
quality as a result of the failure of one of the IR channels, failure of the satellite cooling system as well as the high
stratospheric aerosol loadings following the eruption of Mount Pinatubo in 1991.

The nearly global, high-resolution view of the world’s oceans provided by satellite instruments can be used as a
way of improving and testingmany aspects of SST analysis. By combining the more detailed fields produced by
satellites with the long records of in situ measurements, more detailed reconstructions are possible over a wider
area of the Earth [Rayner et al., 2003; Smith et al., 2008;Hirahara et al., 2013]. Satellite data can also be used to assess
the verisimilitude of reconstructions based on sparser in situ data.

7. Concluding Remarks and Future Directions

One of the chief difficulties in assessing the uncertainties in SST data sets is the impossibility of tracing indi-
vidual observations back via an unbroken chain to international measurement standards. The creation of a
global array of reference stations each making simultaneous redundant measurements of a variety of marine
variables could solve some of the problems of SST analysis that have bedeviled the understanding of historical
SST change and would provide a gold standard against which the future wider observing system—incorpo-
rating observations from ships, buoys, profiling floats, and satellites—can be assessed. Even without such
traceability a climate record could be more easily maintained by stricter adherence to the Global Climate
Observing System [GCOS, 2003] climate monitoring principles.

In the absence of such a network, the estimation of uncertainties has depended heavily on redundancies in
measurement systems and in analysis techniques. Full use of the redundancies is now being made in the
modern period via comparisons of the many available satellite sources with each other and with in situ
sources [O’Carroll et al., 2008; Merchant et al., 2012] and subsurface data [Gille, 2012]. Analyses that ingest a
variety of data sources can produce bias statistics for each of the inputs [Brasnett, 2008; Xu and Ignatov,
2010]. Such information can be exploited to assess their relative quality and, as the analyses are pushed
further back in time [Roberts-Jones et al., 2012], they will help assess uncertainties through a larger part of
the record.

SSTs are physically related to other measurements including surface pressures and winds, salinity, air tem-
peratures, subsurface temperatures, and ocean biology amongst others. Information from SST can be
supplemented by analyses based on physical understanding of the climate system. It has already been shown
that by combining information from night marine air temperatures with SST, it was possible to greatly reduce
uncertainties in early twentieth and late nineteenth century SST. Yu et al. [2004] used a joint estimation
method to minimize uncertainties in flux estimates based on a range of different variables mostly based on
satellite data. Other studies [Tung and Zhou, 2010; Deser et al., 2010] have used physical reasoning based on
a host of variables toexplore uncertainties in the long-term trends of tropical Pacific SSTs first raised by
Vecchi et al. [2008]. It has even been suggested that proxy records such as isotope ratios from corals
and ice cores could be used, with appropriate care, to understand uncertainties in the longest-term
changes in SST [Anderson et al., 2013]. The most advanced exemplars of physical and statistical
synthesis are ocean and coupled reanalyses which will play an increasingly important role in under-
standing observational uncertainty and long-term climate change.

A key barrier to understanding SST uncertainty is a lack of appropriate metadata. Better information is
needed concerning how measurements were made, which method was used to make a particular observa-
tion, calibration information, the depths at which observations were made, and even basic information such
as the call sign or name of the ship that made a particular observation.

Some of this information can be inferred from data already contained in marine reports. Where reports in
ICOADS cannot be associatedwith a particular ship, either because they have amissing ID, or a generic ID, there
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is much to be gained by grouping observations to give plausible ship tracks, or voyages. By using data asso-
ciation techniques to infer suchmetadata from the location information and other clues such as how frequently
observations were made and which variables were observed, it should be possible to assess systematic and
random errors on a ship-by-ship basis going back to the start of the record and even infer likely measurement
methods based on characteristic variations of the measurements with the meteorological conditions.

A more systematic approach to the assessment of analysis techniques is needed to elucidate the reasons
for the differences between analyses and to assess the verisimilitude of analysis uncertainty estimates.
Approaches could include theoretical intercomparisons of statistical methods, comparisons based on well-
defined sets of common input observations, and benchmarks built from data sets (such as model out-
put) where the truth is known a priori. Benchmark tests like those planned by the International Surface
Temperature Initiative [Thorne et al., 2011b] provide an objective measure against which analysis techniques
can be evaluated. Both analysis techniques and benchmarks will have to be tailored appropriately for the
particular problems affecting SST measurements and the latest understanding of measurement uncertainties.

A key weakness of historical SST data sets is the lack of attention paid to evaluating the effects of data biases
particularly in the post-1941 records. Further independent estimates of the biases produced need to be
undertaken using as diverse a range of means as possible and the robust critique of existing methods must
continue. Ideally, these would be complemented by carefully designed field tests of buckets and other
measurement methods.

Combining new analysis techniques that have been appropriately benchmarked with novel approaches to
assessing uncertainty arising from systematic errors, pervasive systematic errors and their adjustments will give
new end-to-end analyses that will help to explore the uncertainties in historical SSTs in a more
systematic manner.

For long-term historical analyses, there is no substitute for actual observations and relevant metadata. Efforts
to identify archives of marine observations and digitize them are ongoing [Brohan et al., 2009;Wilkinson et al.,
2011]. Such programs are labor intensive, first in identifying and cataloging the holdings in archives around
the world, then in creating and storing digital images of the paper books, and finally in keying in the ob-
servations. The difficulty of decoding handwritten entries in a variety of languages, formats, and scripts
means that optical character recognition technologies are of limited use. A number of popular crowd-sourcing
projects have been started to key information from ships’ logs that have historical as well as meteorological
interest. OldWeather.org has keyed data from Royal Navy logs from the First World War [Brohan et al., 2009] and
is now working on logs from polar expeditions. Digitization of data also holds the possibility of extending in-
strumental records further back in time [Brohan et al., 2010]. New observations, with reliable metadata, can be
used not only to reduce uncertainty in SST analyses, but also to test the reliability of existing interpolated
products and their uncertainties.

The ultimate destination of newly digitized observations is the International Comprehensive Ocean
Atmosphere Data Set (ICOADS) [Woodruff et al., 2011]. The ICOADS repository of marine meteorological data
has long been the focus of advances in the understanding of marine climatology. It provides a consistent
baseline for a wide range of studies, providing a solid basis for traceability and reproducibility. The continued
existence, maintenance and improvement of ICOADS are essential to the future understanding of the
global climate.

Finally, the work of identifying and quantifying uncertainties will be pointless, if those uncertainties are not
used. Uncertainty estimates provided with data sets have sometimes been difficult to use or easy to use in-
appropriately. As pointed out by Rayner et al. [2009], “more reliable and user-friendly representations of un-
certainty should be provided” in order to encourage their widespread and effective use.

Appendix A
Figure 1 was calculated in the following way. Observations were separated into three groups—shallow, deep,
and unknown—using the metadata assignments of Kennedy et al. [2011c]. Bucket and buoy measurements
were considered to be shallow. Engine intake and hull contact measurements were considered to be deep.
Shallow measurements were assumed to exhibit a diurnal cycle equal to that measured by drifting buoys
[Kennedy et al., 2007]. Deep measurements were assumed to have no diurnal cycle. The two groups were
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assumed to measure the same temperature just before sunrise. The relative bias between the two was cal-
culated by subtracting the minimum of the diurnal cycle from the daily average. This value varies by location
and calendar month. The bias in each grid box was estimated by multiplying the relative bias by the fraction
of shallow measurements. The bias was then normalized relative to the period 1961–1990, the anomaly pe-
riod used for HadSST3. Figure 1 shows the global monthly average of the bias.
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